Investigation of free convection in micropolar nanofluid with induced magnetic field

  • N. AkmalEmail author
  • M. Sagheer
  • S. Hussain
  • A. Kamran
Regular Article


The spotlight of the study is mainly the effect of the induced magnetic field on the free convection for a non-Newtonian micropolar nanofluid using the single phase model. The nondimensional equations describing the fluid motion, energy, angular momentum and the induced magnetic field of nanofluid are solved using the Keller box method. The study of the effect of the magnetic Reynolds number on the fluid flow, heat and mass transfer is carried out as an important part of the investigation. The behavior of the nanofluid is also observed under the effect of the spin viscosity material parameter of the micropolar fluid. It is interesting to see that the angular momentum boundary layer shrinks for a greater Prandtl number while the suction velocity enhances the angular momentum profile. The material parameter is found to reduce the velocity profile as well as the skin friction coefficient.


  1. 1.
    S. Kakac, W. Aung, R. Viskanta, Natural Convection: Fundamentals and Applications (Hemisphere Publishing Corp., Washington, DC, 1985) pp. 475--611Google Scholar
  2. 2.
    V.J. Rossow, On Flow of Electrically Conducting Fluids Over a Flat Plate in the Presence of a Transverse Magnetic Field (USA, 1958)Google Scholar
  3. 3.
    V.M. Soundalgekar, Proc. Indian Acad. Sci. A 65, 179 (1967)CrossRefGoogle Scholar
  4. 4.
    N.D. Nanousis, Mech. Res. Commun. 23, 81 (1996)CrossRefGoogle Scholar
  5. 5.
    G.K. Singha, P.N. Deka, Theor. Appl. Mech. 33, 259 (2006)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Srinivasacharya, K. Kaladhar, Acta Mech. Sin. 28, 41 (2012)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    D.S. Chauhan, P. Rastogi, Int. J. Nonlinear Sci. 14, 228 (2012)MathSciNetGoogle Scholar
  8. 8.
    M. Hatami, D.D. Ganji, J. Magn. Magn. Mater. 396, 275 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Bilal, S. Hussain, M. Sagheer, Bull. Polish Acad. Sci. Tech. Sci. 65, 383 (2017)Google Scholar
  10. 10.
    K. Mehmood, S. Hussain, M. Sagheer, Int. J. Heat Mass Transf. 109, 397 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Bilal, M. Sagheer, S. Hussain, Y. Mehmood, Commun. Theor. Phys. 67, 688 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    O.A. Bé, Int. J. Therm. Sci. 48, 1596 (2009)CrossRefGoogle Scholar
  13. 13.
    K.J. Basant, I. Sani, J. Phys. Soc. Jpn. 82, 084401 (2013)CrossRefGoogle Scholar
  14. 14.
    Sarveshanand, A.K. Singh, SpringerPlus 4, 333 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Azeem, R. Ali, Walailak J. Sci. Technol. 10, 43 (2012)Google Scholar
  16. 16.
    M. Khan, R. Ali, S. Azeem, Walailak J. Sci. Technol. 10, 517 (2013)Google Scholar
  17. 17.
    S. Azeem, R. Ali, Can. J. Appl. Sci. 2, 202 (2012)Google Scholar
  18. 18.
    R. Ali, S. Azeem, M. Khan, M. Ayub, Eng. Comput. 32, 149 (2016)CrossRefGoogle Scholar
  19. 19.
    A.C. Eringen, J. Math. Mech. 16, 1 (1966)MathSciNetGoogle Scholar
  20. 20.
    V.K. Stokes, Phys. Fluids 9, 1709 (1966)ADSCrossRefGoogle Scholar
  21. 21.
    H.H. Sherief, M.S. Faltas, E.A. Ashmawy, A.M. Abdel-Hameid, Eur. J. Mech. B Fluids 59, 186 (2016)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A.J. Chamkha, T. Groş, Int. Commun. Heat Mass Transf. 29, 1119 (2002)CrossRefGoogle Scholar
  23. 23.
    R. Bhargava, L. Kumar, H.S. Takhar, Int. J. Eng. Sci. 41, 123 (2003)CrossRefGoogle Scholar
  24. 24.
    O. Abdulaziz, I. Hashim, Numer. Heat Transf. A: Appl. 55, 270 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    H. Xu, S.J. Liao, I. Pop, J. Non-Newtonian Fluid Mech. 139, 31 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Postelnicu, I. Pop, Appl. Math. Comput. 217, 4359 (2011)MathSciNetGoogle Scholar
  27. 27.
    A. Ishak, Y.Y. Lok, I. Pop, Chem. Eng. Commun. 197, 1417 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Malvandi, D.D. Ganji, Int. J. Sediment Res. 29, 423 (2014)CrossRefGoogle Scholar
  29. 29.
    S.A. Moshizi, A. Malvandi, D.D. Ganji, I. Pop, Int. J. Therm. Sci. 84, 347 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Malvandi, Therm. Sci. 19, 1603 (2015)CrossRefGoogle Scholar
  31. 31.
    S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, technical report, Argonne National Lab., IL, USA (1995)Google Scholar
  32. 32.
    S. Hussain, S.E. Ahmed, T. Akbar, Int. J. Heat Mass Transf. 114, 1054 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Kamran, S. Hussain, M. Sagheer, N. Akmal, Res. Phys. 7, 3037 (2017)Google Scholar
  34. 34.
    M. Sheikholeslami, H.B. Rokni, Int. J. Heat Mass Transf. 107, 288 (2017)CrossRefGoogle Scholar
  35. 35.
    T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer (Springer Science & Business Media, 2012)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsCapital University of Science and TechnologyIslamabadPakistan

Personalised recommendations