Advertisement

Features of the flow over a rotating circular cylinder at different spin ratios and Reynolds numbers: Experimental and numerical study

  • Mohammad Javad Ezadi YazdiEmail author
  • Ali Safavi Rad
  • Abdulamir Bak Khoshnevis
Regular Article
  • 41 Downloads

Abstract.

In this study, the characteristics of the flow in a rotating circular cylinder are investigated experimentally and numerically. The hot-wire anemometry is used to measure the mean velocity and turbulent intensity of the flow, also the k-\(\omega\) SST model is used to extract the numerical results. The diameter of the cylinder is considered to be 20mm. The effect of Reynolds number \(({\rm Re})\) in the range of \((5900 \leq {\rm Re} \leq 11800)\) and the spin ratio (\( \alpha\)) in the range of \((0 \leq \alpha \leq 0.525)\) on the characteristics of the flow wake such as time-averaged velocity, turbulence intensity, higher-order central moments of the hot-wire velocity signals (i.e. skewness factor), Strouhal number, drag coefficient and flow pattern have been investigated. According to the experimental results, the cylinder rotation has led to change in the mean and fluctuation velocity profiles and the velocity reduction region has become smaller by increasing the Reynolds number. Furthermore, the symmetry of the flow is broken as the rotation ratio increases. Also, by increasing the rotation ratio, the positions of the stagnation and separation points are changed. It is found that with increasing the rotation ratio, the drag coefficient and the velocity reduction parameters are decreased.

References

  1. 1.
    P.W. Bearman, Annu. Rev. Fluid Mech. 16, 195 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    A. Radi, M. Thompson, A. Rao, K. Hourigan, J. Sheridan, J. Fluid Mech. 734, 567 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    M. Gad-el Hak, D.M. Bushnell, J. Fluids Eng. 113, 5 (1991)CrossRefGoogle Scholar
  4. 4.
    A. Martin-Alcantara, E. Sanmiguel-Rojas, R. Fernandez-Feria, J. Fluids Struct. 54, 868 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    O.M. Griffin, M. Hall, J. Fluids Eng. 113, 526 (1991)CrossRefGoogle Scholar
  6. 6.
    A. Rao, A. Radi, J.S. Leontini, M.C. Thompson, J. Sheridan, K. Hourigan, J. Fluid Mech. 769, R2 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    J. Meena, S. Mittal et al., J. Fluid Mech. 766, 28 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Tokumaru, P. Dimotakis, J. Fluid Mech. 224, 77 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    V. Modi, F. Mokhtarian, M. Fernando, T. Yokomizo, J. Aircr. 28, 104 (1991)CrossRefGoogle Scholar
  10. 10.
    L. Prandtl, Naturwissenschaften 13, 93 (1925)ADSCrossRefGoogle Scholar
  11. 11.
    D. Ingham, T. Tang, J. Comput. Phys. 87, 91 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    H. Badr, S. Dennis, P. Young, Comput. Fluids 17, 579 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    Y.M. Chen, Y.R. Ou, A.J. Pearlstein, J. Fluid Mech. 253, 449 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    S. Kang, Phys. Fluids 18, 047106 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Chen, V. Patel, AIAA J. 26, 641 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    S. Mittal, B. Kumar, J. Fluid Mech. 476, 303 (2003)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Badr, M. Coutanceau, S. Dennis, C. Menard, J. Fluid Mech. 220, 459 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Chew, M. Cheng, S. Luo, J. Fluid Mech. 299, 35 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Ezadi Yazdi, A. Bak Khoshnevis, J. Turbul. 19, 529 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    A. Bak Khoshnevis, M.J. Ezadi Yazdi, E. Gholiepour Asrami, J. Mech. Eng. 45, 39 (2015)Google Scholar
  21. 21.
    W. Chen, C.-K. Rheem, J. Mar. Sci. Technol. 24, 111 (2019)CrossRefGoogle Scholar
  22. 22.
    O. Lehmkuhl, I. Rodrí, Phys. Fluids 26, 125110 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    W. Cheng, D. Pullin, R. Samtaney, W. Zhang, W. Gao, J. Fluid Mech. 820, 121 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Karabelas, B. Koumroglou, C. Argyropoulos, N. Markatos, Appl. Math. Modell. 36, 379 (2012)CrossRefGoogle Scholar
  25. 25.
    W. Cheng, D. Pullin, R. Samtaney, J. Fluid Mech. 855, 371 (2018)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Aljure, I. Rodriguez, O. Lehmkuhl, C.D. Pé, Int. J. Heat Fluid Flow 55, 76 (2015)CrossRefGoogle Scholar
  27. 27.
    G. Smaism, O. Fatla, A. Valera Medina, A. Rageb, N. Syred, Int. J. Energy Environ. 7, 23 (2016)Google Scholar
  28. 28.
    M.J. Ezadi Yazdi, A. Bak Khoshnevis, Eur. Phys. J. Plus 133, 533 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Ardekani, F. Farhani, A. Nourmohammadi, Flow Meas. Instrum. 50, 237 (2016)CrossRefGoogle Scholar
  30. 30.
    F.R. Menter, AIAA J. 32, 1598 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer, 2016)Google Scholar
  32. 32.
    S. Sarkar, S. Sarkar, J. Fluids Struct. 26, 19 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    P. Bearman, J. Fluid Mech. 21, 241 (1965)ADSCrossRefGoogle Scholar
  34. 34.
    O.M. Griffin, S.E. Ramberg, J. Fluid Mech. 66, 553 (1974)ADSCrossRefGoogle Scholar
  35. 35.
    A. Mariotti, G. Buresti, M. Salvetti, Eur. J. Mech. B/Fluids 74, 351 (2018)CrossRefGoogle Scholar
  36. 36.
    I. Wygnanski, H.E. Fiedler, J. Fluid Mech. 41, 327 (1970)ADSCrossRefGoogle Scholar
  37. 37.
    G. Fabris, Phys. Fluids 26, 1437 (1983)ADSCrossRefGoogle Scholar
  38. 38.
    A. Mariotti, G. Buresti, Exp. Fluids 54, 1612 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Mariotti, G. Buresti, G. Gaggini, M. Salvetti, J. Fluid Mech. 832, 514 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    A. Mariotti, J. Wind Eng. Ind. Aerodyn. 176, 21 (2018)CrossRefGoogle Scholar
  41. 41.
    R. Antonia, P.Å. Krogstad, Fluid Dyn. Res. 28, 139 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    G. Buresti, P. Petagna, A. Talamelli, Exp. Therm. Fluid Sci. 17, 18 (1998)CrossRefGoogle Scholar
  43. 43.
    F. Diaz, J. Gavaldà, Phys. Fluids 26, 3454 (1983)ADSCrossRefGoogle Scholar
  44. 44.
    J. Jaminet, C.C.W. Va, AIAA J. 7, 1817 (1969)ADSCrossRefGoogle Scholar
  45. 45.
    S. Kumar, C. Cantu, B. Gonzalez, J. Fluids Eng. 133, 041201 (2011)CrossRefGoogle Scholar
  46. 46.
    S. Kang, H. Choi, S. Lee, Phys. Fluids 11, 3312 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    J. Calvert, J. Fluid Mech. 27, 273 (1967)ADSCrossRefGoogle Scholar
  48. 48.
    C.P. Van Dam, Prog. Aerosp. Sci. 35, 751 (1999)CrossRefGoogle Scholar
  49. 49.
    S. Goldstein, Proc. R. Soc. Lond. A 155, 570 (1936)ADSCrossRefGoogle Scholar
  50. 50.
    K. Aoki, T. Ito, Proc. School Eng. Tokai Univ. 26, 29 (2001)ADSGoogle Scholar
  51. 51.
    A. Elmiligui, K. Abdol-Hamid, S. Massey, S. Pao, in 22nd Applied Aerodynamics Conference and Exhibit (AIAA, 2004) p. 4959Google Scholar
  52. 52.
    S. Karabelas, Int. J. Heat Fluid Flow 31, 518 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSemnan UniversitySemnanIran
  2. 2.Department of Mechanical EngineeringIslamic Azad University South Tehran BranchTehranIran
  3. 3.Department of Mechanical EngineeringHakim Sabzevari UniversitySabzevarIran

Personalised recommendations