A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function

  • Kashif Ali Abro
  • J. F. Gómez-AguilarEmail author
Regular Article


In this research, a comparative study of modern differentiations based on singular versus non-singular and local versus non-local kernels have been analyzed for Walter’s-B liquid. In order to expose the efficiency of the two types of modern differentiations namely Caputo-Fabrizio and Atangana-Baleanu fractional differentiations, the partial differential equations governing Walter’s-B liquid are modeled through modern differentiations to study the free convection flow of Walter’s-B liquid. The critical focus is set on the combined heat and mass transfer. The fractional governing equations are solved by invoking the Laplace transform and general solutions are investigated for velocity, temperature and concentration analytically. The analytic solutions are transferred in terms of the Fox- H function for eliminating the gamma functions among the expressions of velocity, temperature and concentration. This comparative analysis indicates that the analytic results obtained via the Caputo-Fabrizio fractional differentiation have reciprocal trends in comparison with the Atangana-Baleanu fractional differentiation. Finally, graphical observations are also depicted for the check of influences of different pertinent parameters on the motion of Walter’s-B liquid.


  1. 1.
    B. Sahoo, S. Poncet, Int. J. Heat Mass Transfer 54, 5010 (2011)CrossRefGoogle Scholar
  2. 2.
    T. Sarpkaya, P.G. Rainey, Acta Mech. 11, 237 (1971)CrossRefGoogle Scholar
  3. 3.
    K.A. Abro, M.A. Solangi, Punjab Univ. J. Math. 49, 113 (2017)Google Scholar
  4. 4.
    A.W. Sisko, Ind. Eng. Chem. 50, 1789 (1958)CrossRefGoogle Scholar
  5. 5.
    N.A. Sheikh, F. Ali, M. Saqib, I. Khan, S.A.A. Jan, A.S. Alshomrani, M.S. Alghamdi, Results Phys. 7, 789 (2017)CrossRefGoogle Scholar
  6. 6.
    K.A. Abro, I. Khan, Chin. J. Phys. 55, 1583 (2017)CrossRefGoogle Scholar
  7. 7.
    K.A. Abro, H.S. Shaikh, M. Norzieha, I. Khan, T. Asifa, Malays. J. Fund. Appl. Sci. 14, 20 (2018)Google Scholar
  8. 8.
    I. Khan, K. Fakhar, M.I. Anwar, Spec. Top. Rev. Porous Media 3, 89 (2012)CrossRefGoogle Scholar
  9. 9.
    K.A. Abro, M. Hussain, M.M. Baig, Prog. Fract. Differ. Appl. 3, 69 (2017)CrossRefGoogle Scholar
  10. 10.
    M.H. Laghari, K.A. Abro. A.A. Shaikh, Int. J. Adv. Appl. Sci. 4, 97 (2017)CrossRefGoogle Scholar
  11. 11.
    J.J. Choi, Z. Rusak, J.A. Tichy, J. Non-Newtonian Fluid Mech. 85, 165 (1999)CrossRefGoogle Scholar
  12. 12.
    C. Fetecau, F. Corina, Int. J. Non-Linear Mech. 38, 423 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    K.A. Abro, A.A. Shaikh, S. Dehraj, Mehran Univ. Res. J. Eng. Technol. 35, 157 (2016)Google Scholar
  14. 14.
    P. Ravindran, J.M. Krishnan, K.R. Rajagopal, Int. J. Eng. Sci. 42, 1973 (2004)CrossRefGoogle Scholar
  15. 15.
    K.A. Abro, M. Hussain, M.M. Baig, Punjab Univ. J. Math. 50, 97 (2018)Google Scholar
  16. 16.
    I. Khan, K. Fakhar, S. Sharidan, Transp. Porous Media 91, 49 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Masood, T. Hayat, Nonlinear Anal. Real World Appl. 9, 1952 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    K.A. Abro, M. Hussain, M.M. Baig, Int. J. Adv. Appl. Sci. 4, 80 (2017)CrossRefGoogle Scholar
  19. 19.
    M.M. Rashidi, Z. Yang, M. Awais, M. Nawaz, T. Hayat, PLoS ONE 12, e0168923 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Qasim, Alex. Eng. J. 52, 571 (2013)CrossRefGoogle Scholar
  21. 21.
    Q. Al-Mdallal, K.A. Abro, I. Khan, Complexity 2018, 8131329 (2018)CrossRefGoogle Scholar
  22. 22.
    K. Walters, N.D. Waters, Braz. J. Appl. Phys. 15, 1 (1964)Google Scholar
  23. 23.
    D. Kumar, R.K. Srivastava, Proc. Natl. Seminar Math. Comput. Sci. Meerut 1, 105 (2005)Google Scholar
  24. 24.
    O. Prakash, D. Kumar, Y.K. Dwivedi, J. Electromagn. Anal. Appl. 2, 581 (2010)Google Scholar
  25. 25.
    M.M. Nandeppanavar, M.S. Abel, J. Tawade, Commun. Nonlinear Sci. Numer. Simul. 15, 1791 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    E. Ghasemi, M. Bayat, M. Bayat, Int. J. Phys. Sci. 6, 5022 (2011)Google Scholar
  27. 27.
    T.-B. Chang, A. Mehmood, O.A. Bég, M. Narahari, M.N. Islam, F. Ameen, Commun. Nonlinear Sci. Numer. Simul. 16, 216 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    I. Khan, F. Ali, S. Shafie, M. Usman, Bull. Malays. Math. Sci. Soc. 37, 437 (2014)MathSciNetGoogle Scholar
  29. 29.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  30. 30.
    K.A. Abro, I.A. Abro, S.M. Almani, I. Khan, J. King Saud Univ. Sci. (2018)
  31. 31.
    A.A. Zafar, C. Fetecau, Alex. Eng. J. 55, 2789 (2016)CrossRefGoogle Scholar
  32. 32.
    K.A. Abro, I. Khan, Chin. J. Phys. 55, 1583 (2017)CrossRefGoogle Scholar
  33. 33.
    J.F. Gómez Aguilar, Turk. J. Electr. Eng. Comput. Sci. 24, 1421 (2016)CrossRefGoogle Scholar
  34. 34.
    A.R. Kanth, N. Garg, Proc. Comput. Sci. 125, 476 (2018)CrossRefGoogle Scholar
  35. 35.
    A. Atangana, Appl. Math. Comput. 273, 948 (2016)MathSciNetGoogle Scholar
  36. 36.
    K.A. Abro, A.D. Chandio, I.A. Abro, I. Khan, J. Therm. Anal. Calorim., (2018)
  37. 37.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  38. 38.
    K.A. Abro, I. Khan, Therm. Sci. 2018, 165 (2018)Google Scholar
  39. 39.
    J. Hristov, Front. Fract. Calculus 1, 270 (2017)Google Scholar
  40. 40.
    K.A. Abro, I. Khan, A. Tassadiqq, Math. Model. Nat. Phenom. 13, 1 (2018)MathSciNetCrossRefGoogle Scholar
  41. 41.
    N.A. Shah, I. Khan, Eur. Phys. J. C 76, 362 (2016)CrossRefGoogle Scholar
  42. 42.
    K.A. Abro, M.M. Rashidi, I. Khan, I.A. Abro, A. Tassadiq, J. Nanofluids 7, 738 (2018)CrossRefGoogle Scholar
  43. 43.
    A.S. Nadeem, F. Ali, I. Khan, M. Saqib, Neural Comput. Appl. 30, 1865 (2018)CrossRefGoogle Scholar
  44. 44.
    N.A. Sheikh, F. Ali, M. Saqib, I. Khan, S.A.A. Jan, A.S. Alshomrani, M.S. Alghamdi, Results Phys. 7, 789 (2017)CrossRefGoogle Scholar
  45. 45.
    A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)MathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Khan, K.A. Abro, A. Tassaddiq, I. Khan, Entropy 19, 1 (2017)CrossRefGoogle Scholar
  47. 47.
    A. Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 166 (2018)CrossRefGoogle Scholar
  48. 48.
    J.F. Gómez Aguilar, T. Córdova-Fraga, J. Tórres-Jiménez, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, G.V. Guerrero-Ramírez, Math. Prob. Eng. 2016, 7845874 (2016)CrossRefGoogle Scholar
  49. 49.
    A. Atangana, D. Baleanu, J. Eng. Mech. 143, D4016005 (2017)CrossRefGoogle Scholar
  50. 50.
    A. Coronel-Escamilla, J.F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, M.M. Al Qurashi, Entropy 19, 55 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Atangana, B.S.T. Alkahtani, Entropy 17, 4439 (2015)MathSciNetCrossRefGoogle Scholar
  52. 52.
    K.A. Abro, A.A. Memon, M.A. Uqaili, Eur. Phys. J. Plus 133, 113 (2018)CrossRefGoogle Scholar
  53. 53.
    A. Coronel-Escamilla, J.F. Gómez-Aguilar, L. Torres, R.F. Escobar, Physica A 491, 406 (2018)MathSciNetCrossRefGoogle Scholar
  54. 54.
    M. Saqib, F. Ali, I. Khan, N.A. Sheikh, S.B. Shafie, J. Therm. Anal. Calorim. 135, 523 (2019)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic Sciences and Related StudiesMehran University of Engineering TechnologyJamshoroPakistan
  2. 2.CONACyT-Tecnológico Nacional de México/CENIDET. Interior Internado Palmira S/N, Col. PalmiraCuernavacaMexico

Personalised recommendations