Advertisement

Silver monolayer formation on Cu(110) by kinetic Monte Carlo method

  • Moloudi Dardouri
  • Khalid SbiaaiEmail author
  • Abdessamad Hassani
  • Abdellatif Hasnaoui
  • Yahia Boughaleb
  • Abdezzahid Arbaoui
Regular Article
  • 18 Downloads

Abstract.

In this paper, we studied the early stage of growing silver monolayer on Cu(110) using kinetic Monte Carlo Method. In this investigation, we have considered atomic deposition, diffusion and aggregation. We have observed a transition from (1D) to (2D) geometry for temperatures beyond 280K. This transition is mainly due to several elementary processes such as simple atomic jump, detachment and coalescence of clusters. All activation energies have been previously calculated by the drag method in the framework of molecular dynamics simulations and implemented in the KMC code according to the anisotropic bond breaking model (ABBM). The potential adopted in molecular dynamics simulation is based on the embedded atom method. The analysis of kinetic Monte Carlo results allowed the collection of statistical information of adatom and cluster distribution. We also calculated two internal geometric parameters that characterize the evolution of the surface morphology. These calculations have been performed for various temperatures and adatom fluxes.

References

  1. 1.
    F. Montalenti, R. Ferrando, Phys. Rev. B 59, 5881 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    K. Kuhnke, K. Kern, J. Phys.: Condens. Matter 15, S3311 (2003)ADSGoogle Scholar
  3. 3.
    K.K. Kakati, H. Wilman, J. Phys. D. Appl. Phys. 6, 1307 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    D. Edström, D.G. Sangiovanni, L. Hultman, V. Chirita, I. Petrov, J.E. Greene, Thin Solid Films 558, 37 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    H. El Azrak et al., Superlattices Microstruct. 127, 118 (2019)ADSCrossRefGoogle Scholar
  6. 6.
    H. Yildirim, A. Kara, T.S. Rahman, Phys. Rev. B 75, 205409 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Z.Y. Zhang, M.G. Lagally, Science 276, 377 (1997)CrossRefGoogle Scholar
  8. 8.
    K.J. Caspersen, C.R. Stoldt, A.R. Layson, M.C. Bartelt, P.A. Thiel, J.W. Evans, Phys. Rev. B 63, 85401 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Y.W. Mo, J. Kleiner, M.B. Webb, M.G. Lagally, Surf. Sci. 268, 275 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    C. Ratsch, J.A. Venables, J. Vac. Sci. Technol. A: Vac. Surf. Film. 21, S96 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    G. Antczak, G. Ehrlich, Phys. Rev. Lett. 92, 166105 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    L. Kuipers, M.S. Hoogeman, J.W.M. Frenken, H. Van Beijeren, Phys. Rev. B 52, 11387 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    K. Sbiaai, Y. Boughaleb, A. Kara, S. Touhtouh, B. Sahraoui, Phys. Status Solidi Basic Res. 251, 838 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A. Hajjaji, A. Kara, J. Optoelectron. Adv. Mater. 14, 1059 (2012)Google Scholar
  15. 15.
    A. Rapallo et al., J. Chem. Phys. 122, 194308 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Dardouri, A. Hassani, A. Hasnoui, Y. Boughaleb, A. Arbaoui, K. Sbiaai, Phys. Status Solidi 255, 1800404 (2018)CrossRefGoogle Scholar
  17. 17.
    F. Liu et al., Surf. Sci. 624, 89 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    S.M. Oh, S.J. Koh, K. Kyuno, G. Ehrlich, Phys. Rev. Lett. 88, 236102 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Evans, P.A. Thiel, M.C. Bartelt, Surf. Sci. Rep. 61, 1 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    X. He, Z.X. Chen, Appl. Surf. Sci. 370, 433 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    P. Bruschi, P. Cagnoni, A. Nannini, Phys. Rev. B 55, 7955 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    P. Kratzer, Monte Carlo and kinetic Monte Carlo methods, arXiv:0904.2556 [cond-mat.mtrl.-sci] (2009)Google Scholar
  23. 23.
    C. De Giorgi, P. Aihemaiti, F. Buatier de Mongeot, C. Boragno, R. Ferrando, U. Valbusa, Surf. Sci. 487, 49 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    C. Mottet, R. Ferrando, F. Hontinfinde, A.C. Levi, Eur. Phys. J. D 9, 561 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Y.G. Zhu, T.L. Wang, Appl. Surf. Sci. 324, 831 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    P. Office, M. Heath, R. HECKINGBOTTOM 68, 179 (1977)Google Scholar
  27. 27.
    K.J. Wan, X.F. Lin, J. Nogami, Phys. Rev. B 47, 13700 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    A.C. Levi, M. Kotrla, J. Phys.: Conden. Matter 9, 299 (1997)ADSGoogle Scholar
  29. 29.
    Z. Wang, Y. Li, J.B. Adams, Surf. Sci. 450, 51 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    K. Sbiaai, Y. Boughaleb, M. Mazroui, A. Hajjaji, A. Kara, Thin Solid Films 548, 331 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    K. Sbiaai, J. Optoelectron. Adv. Mater. 15, 501 (2013)Google Scholar
  32. 32.
    K. Sbiaai, Y. Boughaleb, J.Y. Raty, A. Hajjaji, M. Mazroui, A. Kara, J. Optoelectron. Adv. Mater. 14, 1059 (2012)Google Scholar
  33. 33.
    F. Hontinfinde, R. Ferrando, A.C. Levi, Surf. Sci. 366, 306 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    S.R. Acharya, S.I. Shah, T.S. Rahman, Surf. Sci. 662, 42 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    U.T. Ndongmouo, F. Hontinfinde, Surf. Sci. 571, 89 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Torija, A.P. Li, X.C. Guan, E.W. Plummer, J. Shen, Phys. Rev. Lett. 95, 257203 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    B. Lü, E.P. Münger, K. Sarakinos, J. Appl. Phys. 117, 134304 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993)CrossRefGoogle Scholar
  40. 40.
    C. Mottet, G. Tréglia, B. Legrand, Phys. Rev. B 46, 16018 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    K. Laasonen, E. Panizon, D. Bochicchio, R. Ferrando, J. Phys. Chem. C 117, 26405 (2013)CrossRefGoogle Scholar
  42. 42.
    C.L. Liu, J.M. Cohen, J.B. Adams, A.F. Voter, Surf. Sci. 253, 334 (1991)ADSCrossRefGoogle Scholar
  43. 43.
    C. Mottet, R. Ferrando, F. Hontinfinde, A. Videcoq, Growth of an anisotropic surface: The case of Ag/Ag(110), in Atomistic Aspects of Epitaxial Growth, NATO Sci. Ser., Ser. II, Vol. 65 (Springer, Dordrecht, 2002)Google Scholar
  44. 44.
    M. Kotrla, Comput. Phys. Commun. 97, 82 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comput. Phys. 17, 10 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Moloudi Dardouri
    • 1
    • 2
  • Khalid Sbiaai
    • 2
    Email author
  • Abdessamad Hassani
    • 2
  • Abdellatif Hasnaoui
    • 2
  • Yahia Boughaleb
    • 1
  • Abdezzahid Arbaoui
    • 1
  1. 1.Laboratory of Physics of Condensed Mather (LPMC)Univ. Chouaib DoukkaliEl JadidaMorocco
  2. 2.Sultan Moulay Slimane UniversityLaboratory LS3M, Polydisciplinary FacultyKhouribgaMorocco

Personalised recommendations