Advertisement

Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme

  • M. S. HashemiEmail author
  • M. Inc
  • E. Karatas
  • E. Darvishi
Regular Article
  • 7 Downloads

Abstract.

In the present paper, we introduce a powerful geometric numerical method for the non-homogenous one-dimensional telegraph equation (TE). A combination of semi-discretization and geometric integrator, group preserving scheme (GPS), is offered to obtain the numerical solutions. The stability analysis and convergence of the utilized method are investigated successfully. Power and accuracy of proposed method have been confirmed by some numerical experiments done for the TE.

References

  1. 1.
    M. El-Azab, M. El-Gamel, Appl. Math. Comput. 190, 757 (2007)MathSciNetGoogle Scholar
  2. 2.
    A. Metaxas, R. Meredith, Industrial Microwave Heating (IET, 1983)Google Scholar
  3. 3.
    P. Jordan, A. Puri, J. Appl. Phys. 85, 1273 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    J. Banasiak, J.R. Mika, Int. J. Stoch. Anal. 11, 9 (1998)Google Scholar
  5. 5.
    V. Weston, S. He, Inverse Prob. 9, 789 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    F. Gao, C. Chi, Appl. Math. Comput. 187, 1272 (2007)MathSciNetGoogle Scholar
  7. 7.
    R. Mohanty, M. Jain, Numer. Methods Part. Differ. Equ. 17, 684 (2001)CrossRefGoogle Scholar
  8. 8.
    R. Mohanty, M. Jain, U. Arora, Int. J. Comput. Math. 79, 133 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H.W. Liu, L.B. Liu, Math. Comput. Modell. 49, 1985 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Dehghan, M. Lakestani, Numer. Methods Part. Differ. Equ. 25, 931 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Saadatmandi, M. Dehghan, Numer. Methods Part. Differ. Equ. 26, 239 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Mohebbi, M. Dehghan, Numer. Methods Part. Differ. Equ. 24, 1222 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Dehghan, A. Shokri, Numer. Methods Part. Differ. Equ. 24, 1080 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Dehghan, A. Shokri, Numer. Methods Part. Differ. Equ. 25, 494 (2009)CrossRefGoogle Scholar
  15. 15.
    M. El-Azab, M. El-Gamel, Appl. Math. Comput. 190, 757 (2007)MathSciNetGoogle Scholar
  16. 16.
    M. Esmaeilbeigi, M. Hosseini, S.T. Mohyud-Din, Int. J. Phys. Sci. 6, 1517 (2011)Google Scholar
  17. 17.
    M. Dosti, A. Nazemi, B. Quartic, J. Inf. Comput. Sci. 2, 83 (2012)Google Scholar
  18. 18.
    R. Jiwari, S. Pandit, R. Mittal, Int. J. Nonlinear Sci. 13, 259 (2012)MathSciNetGoogle Scholar
  19. 19.
    M. Inc, A. Akgül, A. Kilicman, Abstr. Appl. Anal. 2013, 768963 (2013)Google Scholar
  20. 20.
    M. Inc, A. Akgül, A. Kiliman, J. Funct. Spaces Appl. 2012, 984682 (2012)CrossRefGoogle Scholar
  21. 21.
    R. Mittal, R. Bhatia, Appl. Math. Comput. 220, 496 (2013)MathSciNetGoogle Scholar
  22. 22.
    S. Sharifi, J. Rashidinia, Appl. Math. Comput. 281, 28 (2016)MathSciNetGoogle Scholar
  23. 23.
    S. Pandit, M. Kumar, S. Tiwari, Comput. Phys. Commun. 187, 83 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Dehghan, A. Ghesmati, Eng. Anal. Bound. Elements 34, 51 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    R. Arora, N. Chauhan, Int. J. Appl. Comput. Math. 3, 1307 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    W. Ma, B. Zhang, H. Ma, Appl. Math. Comput. 279, 236 (2016)MathSciNetGoogle Scholar
  27. 27.
    J. Rashidinia, M. Jokar, Appl. Anal. 95, 105 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Rostamy, M. Emamjome, S. Abbasbandy, Eur. Phys. J. Plus 132, 263 (2017)CrossRefGoogle Scholar
  29. 29.
    E. Shivanian, H.R. Khodabandehlo, Eur. Phys. J. Plus 129, 241 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Charton, H. Reinhardt, WSEAS Trans. Math. 4, 64 (2005)MathSciNetGoogle Scholar
  31. 31.
    W.E. Schiesser, G.W. Griffiths, A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab (Cambridge University Press, 2009)Google Scholar
  32. 32.
    C.S. Liu, Int. J. Non-Linear Mech. 36, 1047 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    M.S. Hashemi, D. Baleanu, J. Comput. Phys. 316, 10 (2016)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    H.C. Lee, C.I. Hung, Appl. Math. Comput. 133, 445 (2002)MathSciNetGoogle Scholar
  35. 35.
    H.C. Lee, C.S. Liu, Comput. Model. Eng. Sci. 41, 1 (2009)Google Scholar
  36. 36.
    M.S. Hashemi, M.C. Nucci, S. Abbasbandy, Commun. Nonlinear Sci. Numer. Simul. 18, 867 (2013)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    M.S. Hashemi, Commun. Nonlinear Sci. Numer. Simul. 22, 990 (2015)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M.S. Hashemi, D. Baleanu, M. Parto-Haghighi, Rom. J. Phys. 60, 1289 (2015)Google Scholar
  39. 39.
    M.S. Hashemi, D. Baleanu, M. Parto-Haghighi, E. Darvishi, Thermal Sci. 19, 77 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Marin, Math. Prob. Eng. 2008, 158908 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Marin, R. Agarwal, S. Mahmoud, Abstr. Appl. Anal. 2013, 583469 (2013)CrossRefGoogle Scholar
  42. 42.
    M. Marin, G. Stan, Carpathian J. Math. 29, 33 (2013)MathSciNetGoogle Scholar
  43. 43.
    A. Akgül, M.S. Hashemi, M. Inc, S. Raheem, Nonlinear Dyn. 87, 1435 (2017)CrossRefGoogle Scholar
  44. 44.
    M.S. Hashemi, S. Abbasbandy, Bull. Malays. Math. Sci. Soc. 40, 97 (2017)MathSciNetCrossRefGoogle Scholar
  45. 45.
    M.S. Hashemi, E. Darvishi, D. Baleanu, Adv. Differ. Equ. 2016, 89 (2016)CrossRefGoogle Scholar
  46. 46.
    G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods (Oxford University Press, 1985)Google Scholar
  47. 47.
    J.C. Strikwerda, Finite difference schemes and partial differential equations (SIAM, 2004)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Basic Science FacultyUniversity of BonabBonabIran
  2. 2.Science Faculty, Department of MathematicsFırat UniversityElazığTurkey

Personalised recommendations