Density functional study on structures and electronic properties of NO adsorbed into PtmIrn(m + n = 2-7) clusters

  • Kun Gao
  • Xiu-Rong ZhangEmail author
  • Zhi-Cheng Yu
Regular Article


The structure, stability and electronic properties of PtmIrnNO(m + n = 2-7) clusters have been investigated via density functional theory. All ground state structures show an adsorption of NO at the top site of the bare cluster via the N atom. In all of the bimetallic clusters, the NO molecule prefers to be adsorbed near the Ir atom site. The adsorption energy of bimetallic PtmIrnNO (\(m+n=2,4,6\)) is larger than that of pure clusters with the same cluster size, showing that the interaction of even alloy clusters and NO molecule are stronger. There exist clear even-odd oscillations in the second-order energy difference curves of PtmIrNO and PtIrnNO, indicating that Pt3IrNO, Pt5IrNO, PtIr3NO and PtIr5NO clusters are more stable than their neighbors. It is obvious that there exist odd-even oscillations in the curves of \(m+n=3,4,6\) energy gaps, showing that PtIr2NO, Pt3IrNO, PtIr3NO and Pt3Ir3NO clusters are chemically more stable. Magnetic and electronic properties analyses show that the total magnetic moment provided by Ir and Pt atoms, and the magnetic moment mainly arises from localization of the d-electron.


  1. 1.
    R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 39, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications (Wiley Interscience, 1983)Google Scholar
  3. 3.
    S. Hu, L. Xiong, X. Ren, C. Wang, Y. Luo, Int. J. Hydrogen Energ. 34, 8723 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Wang, Q. Han, S. Hu, D. Li, P. Zhang et al., Appl. Catal. B-Environ. 164, 128 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Long, J. Du, G. Jiang, Mol. Phys. 113, 3628 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    A.W. Hauser, J. Gomes, M. Bajdich et al., Phys. Chem. Chem. Phys. 15, 20727 (2013)CrossRefGoogle Scholar
  7. 7.
    A.W. Hauser, P.R. Horn, M. Head-Gordon et al., Phys. Chem. Chem. Phys. 18, 10906 (2016)CrossRefGoogle Scholar
  8. 8.
    X.R. Zhang, Y.N. Cui, L.L. Hong, J. Comput. Theor. Nanosci. 6, 640 (2009)CrossRefGoogle Scholar
  9. 9.
    W.L. Guo, Q. Rao, X.R. Zhang, Chin. J. Comput. Phys. 29, 453 (2012)Google Scholar
  10. 10.
    X.R. Zhang, X. Yang, Y. Li, W.L. Guo, Acta Chim. Sin. 69, 2063 (2011)Google Scholar
  11. 11.
    X.R. Zhang, M. Luo et al., Bull. Mater. Sci. 38, 425 (2015)CrossRefGoogle Scholar
  12. 12.
    P.Y. Huo, X.R. Zhang et al., Bull. Mater. Sci. 40, 1087 (2017)CrossRefGoogle Scholar
  13. 13.
    Zh.Ch. Yu, X.R. Zhang et al., Bull. Mater. Sci. 41, 2 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Gao, X.R. Zhang, Zh.Ch. Yu et al., Comput. Theor. Chem. 1138, 168 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Endou, N. Ohashi et al., J. Phys. Chem. B 104, 5110 (2000)CrossRefGoogle Scholar
  16. 16.
    P. Zhu, T. Shimada, H. Kondoh et al., Surf. Sci. 565, 232 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    W. Mannstadt, A.J. Freeman, Phys. Rev. B 55, 13298 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    M. Tsai, K.C. Hass, Phys. Rev. B 51, 14616 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    B. Hamad, Z. El-Bayyari, A. Marashdeh, Chem. Phys. 443, 26 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Aguilera-Granja, R. Pis-Diez, J. Nanopart. Res. 18, 121 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    P.Y. Huo, X.R. Zhang, J. Zhu et al., Bull. Mater. Sci. 40, 1087 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Endou, N. Ohashi, S. Takami et al., Top. Catal. 11-12, 271 (2000)CrossRefGoogle Scholar
  23. 23.
    N.B. Singh, B.I. Sharma, U. Sarkar, Physica E 73, 12 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    B. Delley, Phys. Rev. B 66, 155125 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    P. Pulay, J. Comput. Chem. 3, 556 (1982)CrossRefGoogle Scholar
  29. 29.
    M.N. Huda, M.K. Niranjan, B.R. Sahu, L. Kleinman, Phys. Rev. A 73, 053201 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    P. Bloński, J. Hafner, Phys. Rev. B 79, 1377 (2009)Google Scholar
  31. 31.
    S.H. Yang, D.A. Drabold et al., J. Phys. Condens Mat. 9, (1997)Google Scholar
  32. 32.
    M. Chen, D.A. Dixon, J. Phys. Chem. A 117, 3676 (2013)CrossRefGoogle Scholar
  33. 33.
    P. Begum, P. Gogoi, B.K. Mishra et al., Int. J. Quantum Chem. 115, 837 (2015)CrossRefGoogle Scholar
  34. 34.
    K.P. Huber, G. Herzberg, J. Mol. Struct. 124, 273 (1979)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.School of ScienceJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations