Optimization of entropy generation in thermally stratified polystyrene-water/kerosene nanofluid flow with convective boundary condition

  • Aisha Anjum
  • N. A. Mir
  • M. FarooqEmail author
  • S. Ahmad
  • Naila Rafiq
Regular Article


The refinements of thermodynamic features of systems greatly depend on the generation of entropy since it produces thermodynamic irreversibility more appropriately. Efficiency of energy transportation in a system can be improved by minimization of rate of entropy generation. Due to such a crucial role in thermodynamics systems, our main focus is to elaborate the features of entropy generation in polystyrenerene-water and polystyrene-kerosene nanofluids with the combined phenomena of thermal stratification and convective boundary condition. Viscous dissipation and stagnation points are implemented to analyze the flow characteristics deformed by the Riga plate. Momentum and energy equations are modeled in view of the above assumptions. Dimensionless governing equations are acquired by using similar transformations. Descriptions of numerous physical parameters are scrutinized on the temperature, entropy generation and velocity distribution. As an outcome, entropy generation can be minimized by implementing the dominant thermal stratification parameter and the further rate of decay of entropy generation is more prominent in water-polystyrene in comparison to kerosene-polystyrene nanofluid.


  1. 1.
    A. Bejan, Entropy Generation Through Heat and Fluid Flow (Wiley, New York, 1982) p. 864Google Scholar
  2. 2.
    T. Hayat, M.I. Khan, S. Qayyum, M.I. Khan, A. Alsaedi, J. Mol. Liq. 264, 375 (2018)CrossRefGoogle Scholar
  3. 3.
    N.A. Khan, F. Naz, F. Sultan, Open Eng. 7, 185 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, Y. Jian, W. Tan, Int. J. Heat Mass Transfer 127, 901 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Qayyum, M.I. Khan, T. Hayat, A. Alsaedi, M. Tamoor, Int. J. Heat Mass Transfer 127, 933 (2018)CrossRefGoogle Scholar
  6. 6.
    T. Hayat, S. Nawaz, A. Alsaedi, J. Mol. Liq. 248, 447 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Karimzadehkhouei, M. Shojaeian, A.K. Sadaghiani, K. Sendur, M.P. Mengüç, A. Koşar, Entropy 20, 242 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    A. Gailitis, O. Lielausic, Appl. Magnetohydrodyn. Rep. Phys. Inst. Riga 12, 143 (1961)Google Scholar
  9. 9.
    T. Hayat, M. Khan, M. Imtiaz, A. Alsaedi, J. Mol. Liq. 225, 569 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Kumar, S. Sood, S.A. Shehzad, M. Sheikholeslami, J. Mol. Liq. 248, 143 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Anjum, N.A. Mir, M. Farooq, M.I. Khan, T. Hayat, Results Phys. 9, 1021 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    M. Farooq, Aisha Anjum, T. Hayat, A. Alsaedi, J. Mol. Liq. 224, 1341 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Ayub, T. Abbas, M.M. Bhatti, Eur. Phys. J. Plus 131, 193 (2016)CrossRefGoogle Scholar
  14. 14.
    D. Srinivasacharya, O. Surender, Prog. Eng. 127, 986 (2015)CrossRefGoogle Scholar
  15. 15.
    S.R. Mishra, P.K. Pattnaik, G.C. Dash, Alex. Eng. J. 54, 681 (2015)CrossRefGoogle Scholar
  16. 16.
    Ch. RamReddy, P.V.S.N. Murthy, A.M. Rashad, A.J. Chamkha, Eur. Phys. J. Plus 129, 25 (2014)CrossRefGoogle Scholar
  17. 17.
    D. Srinivasacharya, O. Surender, Appl. Nanosci. 5, 29 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    S. Ahmad, M. Farooq, M. Javed, A. Anjum, Results Phys. 8, 1250 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    S. Ahmad, M. Farooq, M. Javed, A. Anjum, Results Phys. 9, 527 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows (ASME, 1995) pp. 99--105, FED-231/MD 66Google Scholar
  21. 21.
    H. Saleh, E. Alali, A. Ebaid, J. Assoc. Arab Univ. Basic Appl. Sci. 24, 206 (2017)Google Scholar
  22. 22.
    T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, M.I. Khan, Phys. Lett. A 382, 749 (2018)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Hayat, Faisal Shah, M.I. Khan, M.I. Khan, A. Alsaedi, J. Mol. Liq. 266, 814 (2018)CrossRefGoogle Scholar
  24. 24.
    S.J. Liao, Homotopy Analysis Method in Non-Linear Differential Equations (Springer and Higher Education Press, Heidelberg, 2012)Google Scholar
  25. 25.
    N. Muhammad, S. Nadeem, T. Mustafa, Results Phys. 7, 862 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    T. Hayat, S. Ali, M.A. Farooq, A. Alsaedi, PLoS ONE 10, e0129613 (2015)CrossRefGoogle Scholar
  27. 27.
    T. Hayat, S. Ali, M. Awais, M.S. Alhuthali, Appl. Math. Mech. 36, 61 (2015)CrossRefGoogle Scholar
  28. 28.
    T.R. Mahapatra, A. Gupta, Heat Mass Transfer 38, 517 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    S. Pop, T. Grosan, I. Pop, Tech. Mech. 25, 100 (2004)Google Scholar
  30. 30.
    P. Sharma, G. Singh, J. Appl. Fluid Mech. 2, 13 (2009)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aisha Anjum
    • 1
  • N. A. Mir
    • 1
  • M. Farooq
    • 1
    Email author
  • S. Ahmad
    • 1
  • Naila Rafiq
    • 2
  1. 1.Department of Mathematics & StatisticsRiphah International UniversityIslamabadPakistan
  2. 2.Department of MathematicsNUMLIslamabadPakistan

Personalised recommendations