Advertisement

Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics

  • Rami Ahmad El-NabulsiEmail author
Regular Article
  • 49 Downloads

Abstract.

In this study, we have constructed a new fractional Schrödinger Hamiltonian for a quantum system characterized by a position-dependent mass and a modified fractional spatial derivative operator. This approach is characterized by a modified commutation relation and a modified Heisenberg’s uncertainty relation which both led to a modified Schrödinger operator typically used to describe quantum mechanics in fractional dimensions. By selecting an effective mass involved in semiconductor heterostructures, we have discussed two independent cases: the confinement of a particle in a one-dimensional infinite well and the motion of a particle in a linear potential used to describe the falling of a particle under gravity. Several features were obtained, yet the main outcome of the present manuscript concerns the fact that, for some specific fractional dimensions, a particle fallen under gravity may have a quantized energy.

References

  1. 1.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure (Les Editions de Physique, Les Ulis, France, 1988)Google Scholar
  2. 2.
    D.L. Smith, C. Mailhiot, Rev. Mod. Phys. 62, 173 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    G.T. Einevoll, Phys. Rev. B 42, 3497 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Morrow, Phys. Rev. B 35, 8074 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    P. Harrison, Quantum Wells, Wires and Dots (Wiley and Sons, New York, 2000)Google Scholar
  6. 6.
    F.Q. Zhao, X.X. Liang, S.L. Ban, Eur. Phys. J. B 33, 3 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    A. de Saavedra, F. Boronat, A. Polls, A. Fabrocini, Phys. Rev. B 50, 4248 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    R. Renan, M.H. Pacheco, C.A.S. Almeida, J. Phys. A 33, L509 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    R. Koc, H. Tutunculer, Ann. Phys. 12, 684 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R.K. Jha, H. Eleuch, Y.V. Rostovtsev, J. Mod. Opt. 58, 652 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    R. Sever, C. Tezcan, Int. J. Mod. Phys. E 17, 1327 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    H. Rajbongshi, Indian J. Phys. 92, 357 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    N. Amir, S. Iqbal, Commun. Theor. Phys. 62, 790 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Meyur, S. Maji, S. Debnath, Adv. High Energy Phys. 2014, 952597 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific Publishing Company, 2011)Google Scholar
  16. 16.
    V. Daftadar-Gejji, Fractional Calculus: Theory and Applications (Narosa Publishing House, 2013)Google Scholar
  17. 17.
    U.N. Katugampola, A new fractional derivative with classical properties, arXiv:1410.6535Google Scholar
  18. 18.
    A. Karci, Univ. J. Eng. Sci. 1, 110 (2013)Google Scholar
  19. 19.
    A. Karci, Univ. J. Eng. Sci. 3, 53 (2015)Google Scholar
  20. 20.
    R.A. El-Nabulsi, Eur. Phys. J. Plus 133, 394 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Prodanov, J. Phys.: Conf. Ser. 701, 012031 (2016)Google Scholar
  22. 22.
    D. Prodanov, Fract. Calc. Appl. Anal. 19, 173 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    D. Prodanov, Chaos Solitons Fractals 102, 236 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Prodanov, Fractals Fract. 2, 1 (2018)Google Scholar
  25. 25.
    U.N. Katugampola, Bull. Math. Anal. Appl. 6, 1 (2014)MathSciNetGoogle Scholar
  26. 26.
    U.N. Katugampola, Appl. Math. Comput. 218, 860 (2011)MathSciNetGoogle Scholar
  27. 27.
    D.R. Douglas, D.J. Ulness, J. Math. Phys. 56, 063502 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    R.N. Costa Filho, M.P. Almeida, G.A. Farias, J.S. Andrade Jr., Phys. Rev. A 84, 050102(R) (2011)ADSCrossRefGoogle Scholar
  29. 29.
    F.H. Stillinger, J. Math. Phys. 18, 1224 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York, 1982)Google Scholar
  31. 31.
    E. Goldfain, Commun. Nonlinear Sci. Numer. Simul. 13, 1397 (2008)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M.A. Lohe, Rep. Math. Phys. 57, 131 (2006)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    K.G. Wilson, M.E. Fisher, Phys. Rev. Lett. 28, 240 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    G. Eyink, Commun. Math. Phys. 125, 613 (1989)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    V.E. Tarasov, Adv. High Energy Phys. 2014, 957863 (2014)CrossRefGoogle Scholar
  36. 36.
    E. Goldfain, Commun. Nonlinear Sci. Numer. Simul. 13, 1297 (2008)MathSciNetGoogle Scholar
  37. 37.
    A. Matos-Abiague, Semicond. Sci. Technol. 17, 150 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    H. Mathieu, P. Lefebvre, P. Christol, J. Appl. Phys. 72, 300 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    H. Mathieu, P. Lefebvre, P. Christol, Phys. Rev. B 46, 4092 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    P. Christol, P. Lefebvre, H. Mathieu, J. Appl. Phys. 74, 5626 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    M. De Dios-Leyva, A. Bruno-Alfonso, A. Matos-Abiague, L.E. Oliveira, J. Phys.: Condens. Matter 9, 8477 (1997)ADSGoogle Scholar
  42. 42.
    M. de Dios-Leyva, A. Bruno-Alfonso, J. Appl. Phys. 82, 3155 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    A. Thilagam, Phys. Rev. B 56, 4665 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    Q.X. Zhao, B. Monemar, P.O. Holtz, M. Willander, B.O. Fimland, K. Johannessen, Phys. Rev. B 50, 4476 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    N. Laskin, Phys. Lett. A 268, 298 (2000)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    N. Laskin, Phys. Lett. A 268, 268 (2000)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    N. Laskin, Phys. Rev. E 66, 056108 (2002)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    M. Naber, J. Math. Phys. 45, 3339 (2004)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    S. Secchi, Topol. Methods Nonlinear Anal. 47, 9 (2016)Google Scholar
  50. 50.
    Y. Hong, Y. Sire, Commun. Pure Appl. Anal. 14, 2265 (2015)MathSciNetCrossRefGoogle Scholar
  51. 51.
    D. Zhang, Yi. Zhang, Z. Zhang, N. Ahmed, Ya. Zhang, F. Li, M.R. Belic, M. Xiao, Ann. Phys. 529, 1700149 (2017)CrossRefGoogle Scholar
  52. 52.
    S. Longhi, Opt. Lett. 40, 1117 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    V. Ambrosio, G.M. Figueiredo, Asympt. Anal. 105, 159 (2017)Google Scholar
  54. 54.
    Jann-Long Chern, Sze-Guang Yang, J. Math. Phys. 55, 032102 (2014)MathSciNetCrossRefGoogle Scholar
  55. 55.
    R.A. El-Nabulsi, Eur. Phys. J. Plus 133, 277 (2018)CrossRefGoogle Scholar
  56. 56.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1983)Google Scholar
  57. 57.
    R.W. Robinett, Am. J. Phys. 64, 803 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    I. Guedes, Phys. Rev. A 63, 034102 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    A.R. Plastino, C. Tsallis, J. Math. Phys. 24, 041505 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    A. Liemert, A. Kienle, Mathematics 4, 1 (2016)CrossRefGoogle Scholar
  61. 61.
    M.N. Berberan-Santos, E.N. Bodunov, L. Pogliani, J. Math. Chem. 37, 101 (2005)MathSciNetCrossRefGoogle Scholar
  62. 62.
    J.A.K. Suykens, Phys. Lett. A 373, 1201 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    T.F. Kamalov, Quant. Comp. Comput. 11, 52–57 (2011)Google Scholar
  64. 64.
    S.H. Seyedi, B.N. Saray, A. Ramazani, Powder Technol. 340, 264 (2018)CrossRefGoogle Scholar
  65. 65.
    J. Manafian, M. Lakestani, Indian J. Phys. 91, 243 (2017)ADSCrossRefGoogle Scholar
  66. 66.
    S.H. Seyedi, B.N. Saray, M.R.H. Nobari, Appl. Math. Comput. 269, 488 (2015)MathSciNetGoogle Scholar
  67. 67.
    M. Lakestani, J. Manafian, Opt. Quantum Electron. 50, 4 (2018)CrossRefGoogle Scholar
  68. 68.
    J. Manafian, Eur. Phys. J. Plus 130, 255 (2015)CrossRefGoogle Scholar
  69. 69.
    J. Manafian, M.F. Aghdaei, M. Khalilian, R.S. Jeddi, Optik 135, 395 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Athens Institute for Education and Research, Mathematics and Physics DivisionsAthensGreece

Personalised recommendations