Advertisement

Time-fractional Drinfeld-Sokolov-Wilson system: Lie symmetry analysis, analytical solutions and conservation laws

  • Wenhao Liu
  • Yufeng ZhangEmail author
Regular Article
  • 39 Downloads

Abstract.

In this paper, under the background of the Riemann-Liouville fractional differential, the Lie point symmetries are obtained by using the Lie symmetry method. The symmetry reductions are also derived ulteriorly. Next, the power series solution and its convergence proof are given. Finally, conservation laws are well constructed based on the Noether theorem. Especially, the approximate analytical solution is studied by employing the q-homotopy analysis method under the background of Caputo fractional differential. What is more, the dynamic behaviour of all these exact solutions of the equation are described with changing the value of \( \alpha\) .

References

  1. 1.
    W.M. Moslem, Phys. Plasmas 18, 032301 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    F.B.M. Duarte, J.A. Tenreiro Machado, Nonlinear Dyn. 29, 342 (2002)CrossRefGoogle Scholar
  4. 4.
    J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Berlin, 2007)Google Scholar
  5. 5.
    S. Das, Functional Fractional Calculus (Springer, New York, 2011)Google Scholar
  6. 6.
    E. Fan, J. Phys. A 42, 095206 (2009)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Y. Zhang, W.X. Ma, Z. Naturforsch. A 70, 263 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S. Zhang, Phys. Lett. A 365, 448 (2007)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Zhang, H.Q. Zhang, Phys. Lett. A 375, 1069 (2011)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Guo, L. Mei, Y. Li et al., Phys. Lett. A 376, 407 (2012)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    X. Zhang, J. Zhao, J. Liu et al., Appl. Math. Model. 38, 5545 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Hosseini Fadravi, H. Saberi Nik, R. Buzhabadi, Int. J. Differ. Equ. 2011, 237045 (2011)Google Scholar
  13. 13.
    Y. Çenesiz, A. Kurt, O. Tasbozan, Ann. West Univ. Timisoara-Math. Comput. Sci. 55, 37 (2017)CrossRefGoogle Scholar
  14. 14.
    A. Arikoglu, I. Ozkol, Chaos, Solitons Fractals 34, 1473 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    V.S. Ertürk, S. Momani, J. Comput. Appl. Math. 215, 142 (2008)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    B. Ghazanfari, A. Sepahvandzadeh, J. Math. Comput. Sci. 8, 236 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Momani, N. Shawagfeh, Appl. Math. Comput. 182, 1083 (2006)MathSciNetGoogle Scholar
  18. 18.
    Z.M. Odibat, S. Momani, Int. J. Nonlinear Sci. Numer. Simul. 7, 27 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Vestnik Usatu 9, 21 (2007)Google Scholar
  20. 20.
    N.H. Ibragimov, J. Math. Anal. Appl. 333, 311 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.Y. Lukashchuk, Nonlinear Dyn. 80, 791 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, PhD Thesis, Shanghai Jiao Tong University, 1992Google Scholar
  23. 23.
    S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (CRC Press, 2003)Google Scholar
  24. 24.
    S. Liao, Appl. Math. Comput. 147, 499 (2004)MathSciNetGoogle Scholar
  25. 25.
    S. Liao, Appl. Math. Comput. 169, 1186 (2005)MathSciNetGoogle Scholar
  26. 26.
    M.A. El-Tawil, S.N. Huseen, Int. J. Appl. Math. Mech. 8, 51 (2012)Google Scholar
  27. 27.
    H.M. Jaradat, S. Al-Shara, Q.J.A. Khan et al., IAENG Int. J. Appl. Math. 46, 64 (2016)MathSciNetGoogle Scholar
  28. 28.
    V.G. Drinfel'd, V.V. Sokolov, J. Sov. Math. 30, 1975 (1985)CrossRefGoogle Scholar
  29. 29.
    G. Wilson, Phys. Lett. A 89, 332 (1982)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    K.S. Miller, B. Ross, An Introduction To The Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)Google Scholar
  31. 31.
    I. Podlubny, Math. Sci. Eng. 198, 261 (1999)MathSciNetCrossRefGoogle Scholar
  32. 32.
    K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (Elsevier, 1974)Google Scholar
  33. 33.
    V.S. Kiryakova, Generalized Fractional Calculus and Applications (CRC Press, 1993)Google Scholar
  34. 34.
    P.J. Olver, Applications of Lie Groups to Differential Equations (Springer Science & Business Media, 2012)Google Scholar
  35. 35.
    S. Sahoo, S.S. Ray, Int. J. Non-Linear Mech. 98, 114 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    R. Sahadevan, P. Prakash, Chaos, Solitons Fractals 104, 107 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Gaur, K. Singh, Math. Commun. 22, 1 (2017)MathSciNetGoogle Scholar
  38. 38.
    C.Y. Qin, S.F. Tian, X.B. Wang et al., Chin. J. Phys. 56, 1734 (2018)CrossRefGoogle Scholar
  39. 39.
    W. Rudin, Principles of Mathematical Analysis, 3rd ed. (China Machine Press, Beijing, 2004)Google Scholar
  40. 40.
    E. Saberi, S.R. Hejazi, Physica A 492, 296 (2018)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    K. Singla, R.K. Gupt, Commun. Nonlinear Sci. Numer. Simul. 53, 10 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsChina University of Mining and TechnologyXuzhou, JiangsuChina

Personalised recommendations