Advertisement

Effect of annealing on phase formation, microstructure and magnetic properties of MgFe2O4 nanoparticles for hyperthermia

  • M. BououdinaEmail author
  • B. Al-Najar
  • L. Falamarzi
  • J. Judith Vijaya
  • M. N. Shaikh
  • S. Bellucci
Regular Article
  • 39 Downloads
Part of the following topical collections:
  1. Focus Point on Nanotechnology, Nanomaterials and Interfaces

Abstract.

In this study the effect of annealing time is confirmed to alter the morphology (shape and size) of magnesium ferrite nanoparticles (MgFe2O4) synthesized by autoclave route, employing ferric and magnesium nitrate salts as precursors. Annealing was applied at 1000 °C for different durations (2, 30 and 60 h) and Rietveld refinements of X-ray diffraction patterns confirm the formation of pure spinel phase and show that the annealing time has a dominant effect on the crystallite size as it increases from 29 up to 89 nm for 2 to 60 h, respectively. Scanning electron microscopy observations confirm that longer annealing time enhances particle growth, in agreement with the crystallite size obtained by X-ray diffraction analysis. Room temperature magnetic measurements reveal a ferromagnetic behavior with a saturation magnetization (Ms) ranging from 25.84 emu/g for annealing at 2h and 29.49 emu/g at 60 h. Self-heating characteristics under an alternating current (AC) magnetic field of 17mT and frequency of 331 kHz were investigated for hyperthermia applications using Magnetherm from Nanotherics. Temperature-time curves indicate that the as-prepared MgFe2O4 nanoparticles show a considerable heating rate, with a maximum temperature of 48 °C in a very short period of time of 15 min and specific absorption rate (SAR) of 19.23 W/g, when annealed for 60 h.

References

  1. 1.
    R.M. Patil, N.D. Thorat, P.B. Shete, S.V. Otari, B.M. Tiwale, S.H. Pawar, Mater. Sci. Eng. C 59, 702 (2016)CrossRefGoogle Scholar
  2. 2.
    A.U. Rashid, P. Southern, J.A. Darr, S. Awan, S. Manzoor, J. Magn. & Magn. Mater. 344, 134 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J. Huanga, M. Chena, W. Kuoa, Y. Suna, F. Lin, Ceram. Int. 41, 2399 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Mishra, A. Roy, A. Garg, R. Gupta, S. Mukherjee, J. Alloys Compd. 721, 593 (2017)CrossRefGoogle Scholar
  5. 5.
    L. Li, X. Zhong, R. Wang, X. Tu, J. Magn. & Magn. Mater. 435, 58 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    A.M. EL-Rafei, A.S. El-Kalliny, T.A. Gad-Allah, J. Magn. & Magn. Mater. 428, 92 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    F. Ebrahimi, S.R. Bakhshi, F. Ashrafizadeh, A. Ghasemi, Mater. Res. Bull. 76, 240 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Bi, Y. Ren, F. Bi, T. He, J. Alloys Compd. 646, 827 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Song, Y. He, Appl. Surf. Sci. 420, 911 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Inukai, N. Sakamoto, H. Aono, O. Sakurai, K. Shinozaki, H. Suzuki, N. Wakiya, J. Magn. & Magn. Mater. 323, 965 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M. Venkatesh, G. Suresh Kumar, S. Viji, S. Karthi, E.K. Girija, Mod. Electron. Mater. 2, 74 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Ristic, S. Krehula, M. Reissner, M. Jean, S. Musić, J. Mol. Struct. 1140, 32 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    R.R. Bhosale, A. Kumar, F. AlMomani, I. Alxneit, Ceram. Int. 42, 2431 (2016)CrossRefGoogle Scholar
  14. 14.
    L.L. Mguni, M. Mukenga, K. Jalama, R. Meijboom, Catal. Commun. 34, 52 (2013)CrossRefGoogle Scholar
  15. 15.
    F.S. Yardimci, M. Senel, A. Baykal, Mater. Sci. Eng. C 32, 269 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Sundararajan, L. John Kennedy, P. Nithya, J. Judith Vijaya, M. Bououdina, J. Phys. Chem. Solids 108, 61 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    C.S.S.R. Kumar, F. Mohammad, Adv. Drug Deliv. Rev. 63, 789 (2011)CrossRefGoogle Scholar
  18. 18.
    O.M. Lemine, K. Omri, M. Iglesias, V. Velasco, P. Crespo, P. de la Presa, L. El Mir, Houcine Bouzid, A. Yousif, Ali Al-Hajry, J. Alloys Compd. 607, 125 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Das, N. Sakamoto, H. Aono, K. Shinozaki, H. Suzuki, N. Wakiy, J. Magn. & Magn. Mater. 392, 91 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    A.E. Deatsch, B.A. Evans, J. Magn. & Magn. Mater. 354, 163 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D 36, R167 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    B.B. Lahiri, T. Muthukumaran, J. Philip, J. Magn. & Magn. Mater. 407, 101 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    H. Hirazawa, H. Aono, T. Naohara, T. Maehara, M. Sato, Y. Watanabe, J. Magn. & Magn. Mater. 323, 675 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    V.M. Khot, A.B. Salunkhe, N.D. Thorat, M.R. Phadatare, S.H. Pawar, J. Magn. & Magn. Mater. 332, 48 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    P. Yajaira Reyes-Rodrígueza, D. Alicia Cortés-Hernández et al., J. Magn. & Magn. Mater. 427, 268 (2017)CrossRefGoogle Scholar
  26. 26.
    R. Alizadeh, R. Mahmudi, A.H.W. Ngan, T.G. Langdon, J. Mater. Sci. 50, 4940 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M.R. Akbarpour, H.S. Kim, Mater. Design 83, 644 (2015)CrossRefGoogle Scholar
  28. 28.
    M.R. Akbarpour, M. Farvizi, H.S. Kim, Mater. Design 119, 311 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Zargar, A. Kermanpur, Ceram. Int. 43, 5794 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Doaga, A.M. Cojocariu et al., Mater. Chem. Phys. 143, 305 (2013)CrossRefGoogle Scholar
  31. 31.
    R. Argentina Jasso-Terán, D. Alicia Cortés-Hernández et al., J. Magn. & Magn. Mater. 427, 241 (2017)CrossRefGoogle Scholar
  32. 32.
    H.M. El-Sayed, I.A. Ali, A. Azzam, A.A. Sattar, J. Magn. & Magn. Mater. 424, 226 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Bououdina
    • 1
    Email author
  • B. Al-Najar
    • 1
  • L. Falamarzi
    • 1
  • J. Judith Vijaya
    • 2
  • M. N. Shaikh
    • 3
  • S. Bellucci
    • 4
  1. 1.Department of Physics, College of ScienceUniversity of BahrainZallaqBahrain
  2. 2.Catalysis and Nanomaterials Research Laboratory, Department of ChemistryLoyola CollegeChennaiIndia
  3. 3.Center of Research Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia
  4. 4.Laboratori Nazionali di FrascatiINFNFrascatiItaly

Personalised recommendations