Pulsatile flow and heat transfer of shear-thinning power-law fluids over a confined semi-circular cylinder

  • Akshay Srivastava
  • Amit DhimanEmail author
Regular Article


This work is an attempt to simulate the effects of pulsating flow upon the thermal and hydrodynamic behavior of shear-thinning non-Newtonian fluid (approximated as power-law fluid) while it flows past a semi-circular cylinder fixed in a symmetrically confining channel and deduces the optimum oscillating frequencies and amplitude for a particular power-law index (n) and Reynolds number (Re). The semi-circular cylinder studied has a fixed temperature while the wall confinement is insulating. The ranges of control parameters varied are \({\rm Re}=10\)-100 (based on object's diameter), the amplitude of oscillation (A) = 0-0.6, the Strouhal number (St) = 0-2 and the n ranging from 0.2 to 1. The Prandtl number has been kept fixed at \(({\rm Pr})=50\) (which corresponds to several fluids of industrial importance like n-butanol, etc.). The isotherms and streamlines give a qualitative insight into the heat and flow transfer behavior as various parameters are varied, while the Nusselt number, overall drag and lift coefficients have been calculated to get a quantitative insight. Further, the augmentation in heat transfer and the decline in drag upon using a pulsating non-Newtonian fluid inlet as opposed to using a steady Newtonian flow have been established. Lastly, the temporal variations and the frequency of vortex shedding have been studied using a fast Fourier transform.


  1. 1.
    S.J.D. D'Alessio, J.P. Pascal, Acta Mech. 117, 87 (1996)CrossRefGoogle Scholar
  2. 2.
    S.J.D. D'Alessio, L.A. Finlay, Ind. Eng. Chem. Res. 43, 8407 (2004)CrossRefGoogle Scholar
  3. 3.
    R.P. Chhabra, A.A. Soares, J.M. Ferreira, Acta Mech. 172, 1 (2004)CrossRefGoogle Scholar
  4. 4.
    A. Despeyroux, A. Ambari, A. Ben Richou, J. Non-Newtonian Fluid Mech. 166, 1173 (2011)CrossRefGoogle Scholar
  5. 5.
    R.P. Bharti, R.P. Chhabra, V. Eswaran, Can. J. Chem. Eng. 84, 406 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Sivakumar, R.P. Bharti, R.P. Chhabra, Chem. Eng. Sci. 61, 6035 (2006)CrossRefGoogle Scholar
  7. 7.
    A.A. Soares, J.M. Ferreira, R.P. Chhabra, Ind. Eng. Chem. Res. 44, 5815 (2005)CrossRefGoogle Scholar
  8. 8.
    D.R. Graham, J.J.L. Higdon, J. Fluid Mech. 465, 213 (2002)ADSMathSciNetGoogle Scholar
  9. 9.
    D.R. Graham, J.J.L. Higdon, J. Fluid Mech. 465, 237 (2002)ADSMathSciNetGoogle Scholar
  10. 10.
    M. Iervolino, M. Manna, A. Vacca, Pulsating flow through porous media, in Notes on Numerical Fluid Mechanics and Multidisciplinary Design, edited by M. Deville, L. Thien-Hiep, P. Sagaut, Vol. 110 (2010) pp. 167--173Google Scholar
  11. 11.
    F. De Vita, M.D. de Tullio, R. Verzicco, Theor. Comput. Fluid Dyn. 30, 129 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Tu, M. Deville, J. Biomech. 29, 899 (1996)CrossRefGoogle Scholar
  13. 13.
    D.S. Sankar, K. Hemalatha, Int. J. Non-Linear Mech. 41, 979 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    E. Konstantinidis, S. Balabani, Int. J. Heat Fluid Flow 29, 1567 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Chandra, R.P. Chhabra, Appl. Math. Model. 35, 5766 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd ed. (Butterworth-Heinemann, Oxford, 2008)Google Scholar
  17. 17.
    A. Kumar, A. Dhiman, L. Baranyi, Int. J. Heat Mass Transfer 82, 159 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Kumar, A. Dhiman, L. Baranyi, Int. J. Heat Mass Transfer 102, 417 (2016)CrossRefGoogle Scholar
  19. 19.
    N. Bhalla, A.K. Dhiman, J. Braz. Soc. Mech. Sci. Eng. 39, 3019 (2017)CrossRefGoogle Scholar
  20. 20.
    R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd ed. (Wiley, NY, 2002)Google Scholar
  21. 21.
    T.A. Osswald, E. Baur, S. Brinkmann, K. Oberbach, E. Schmachtenberg, International Plastic Handbook (Carl Hanser Verlag GmbH & Co. KG, 2006)Google Scholar
  22. 22.
    Ansys Inc., ANSYS user manual (Canonsburg, PA, 2013)Google Scholar
  23. 23.
    T. Hayase, J.A.C. Humphrey, R. Greif, J. Comput. Phys. 98, 108 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    V. Eswaran, S. Prakash, A finite volume method for Navier--Stokes equations, in Proceedings of the 3rd Asian CFD Conference, Bangalore, India (1998) pp. 127--136Google Scholar
  25. 25.
    A. Sharma, V. Eswaran, A finite volume method, in Computational Fluid Flow and Heat Transfer, edited by K. Muralidhar, T. Sundararajan (Narosa Publishing House, New Delhi, 2003) pp. 445--482Google Scholar
  26. 26.
    Y.A. Çengel, J.M. Cimbala, Fluid Mechanics: Fundamentals and Applications, 1st ed. (McGraw-Hill Higher Education, Boston, 2006)Google Scholar
  27. 27.
    G.F. Al-Sumaily, M.C. Thompson, Int. J. Heat Mass Transfer 61, 226 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations