Convective heat transfer during the flow of Williamson nanofluid with thermal radiation and magnetic effects

  • HashimEmail author
  • Masood Khan
  • Aamir Hamid
Regular Article


Recently, several studies have been presented to show that nanofluids are amongst the best tools for the enhancement of heat transfer characteristics. It has been experimentally verified that nanofluids are a new type of enhanced working fluids, engineered with enhanced thermo-physical properties. Therefore, we present a novel study to develop and understand a mathematical model for a non-Newtonian Williamson fluid flow in the presence of nanoparticles. This study aims at describing the thermal characteristics of nanoparticles via Rosseland approximation to illustrate the non-linear radiation effects. Convective heat transfer model alongside Brownian motion are studied for the electrically conducting nanofluids flow. A set of partial differential equations for Williamson nanofluid flow has been derived by basic conservation laws, i.e., momentum, energy and concentration conservations. These equations are initially converted to ordinary differential equations by employing non-dimensional quantities. The numerical simulation of these equations is performed using the Runge-Kutta-Fehlberg scheme. The corresponding important physical parameters have been produced as function of the unsteadiness parameter, Weissenberg number, magnetic parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, Biot number, velocity slip parameter and Lewis number. The examination is done to investigate the impact of the above-said parameters on momentum, thermal and concentration boundary layers. It is concluded from our computations that the nanofluids velocity and temperature accelerate when the Brownian motion parameter rises. Results proved that temperature gradient enhances with increase of solid particle concentration, while it decreases with increasing magnetic field. Finally, a comparison of the obtained numerical solution against previous literature is presented which shows satisfactory agreement.


  1. 1.
    S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, H.P. Wang, Vol. 66 (ASME, 1995) pp. 99--105Google Scholar
  2. 2.
    J. Buongiorno, J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
  3. 3.
    D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 52, 5796 (2009)CrossRefGoogle Scholar
  4. 4.
    O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 53, 2477 (2011)Google Scholar
  5. 5.
    F. Mabood, W.A. Khan, A.I.M. Ismail, J. Magn. & Magn. Mater. 374, 569 (2015)CrossRefGoogle Scholar
  6. 6.
    N. Sandeep, A. Malvandi, Adv. Powd. Technol. 27, 2448 (2016)CrossRefGoogle Scholar
  7. 7.
    Hashim, M. Khan, Int. J. Heat Mass Transfer 103, 291 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Nadeem, A.U. Khan, S.T. Hussain, Int. J. Hydrogen Energy 42, 28945 (2017)CrossRefGoogle Scholar
  9. 9.
    Hashim, M. Khan, A. Hamid, Int. J. Heat Mass Transfer 118, 480 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Mukhopadhyay, K. Bhattacharyya, G.C. Layek, Int. J. Heat Mass Transfer 54, 2751 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Cortell, Energy 74, 896 (2014)CrossRefGoogle Scholar
  12. 12.
    T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi, J. Magn. & Magn. Mater. 396, 31 (2015)CrossRefGoogle Scholar
  13. 13.
    W.A. Khan, O.D. Makinde, Z.H. Khan, Int. J. Heat Mass Transfer 96, 525 (2016)CrossRefGoogle Scholar
  14. 14.
    M.K. Nayak, N.S. Akbar, V.S. Pandey, Z.H. Khan, D. Tripathi, Powd. Technol. 315, 205 (2017)CrossRefGoogle Scholar
  15. 15.
    A.S. Dogonchi, M. Alizadeh, D.D. Ganji, Adv. Pow. Technol. 28, 1815 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Khan, Hashim, A. Hafeez, Chem. Eng. Sci. 173, 1 (2017)CrossRefGoogle Scholar
  17. 17.
    J.V.R. Reddy, V. Sugunamma, N. Sandeep, J. Mol. Liq. 236, 93 (2017)CrossRefGoogle Scholar
  18. 18.
    N. Sandeep, M.G. Reddy, J. Mol. Liq. 225, 87 (2017)CrossRefGoogle Scholar
  19. 19.
    R.V. Williamson, Ind. Eng. Chem. 21, 1108 (1929)CrossRefGoogle Scholar
  20. 20.
    I. Dapra, G. Scarpi, Int. J. Rock Mech. Min. Sci. 44, 271 (2007)CrossRefGoogle Scholar
  21. 21.
    C. Vasudev, U.R. Rao, M.V.S. Reddy, G.P. Rao, Am. J. Sci. Ind. Res. 1, 656 (2010)Google Scholar
  22. 22.
    S. Nadeem, S.T. Hussain, C. Lee, Braz. J. Chem. Eng. 30, 619 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Nadeem, N.S. Akbar, Int. J. Numer. Methods Fluids 66, 212 (2010)CrossRefGoogle Scholar
  24. 24.
    M.M. Bhatti, M.M. Rashidi, J. Mol. Liq. 221, 567 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Reddy, K. Naikoti, M.M. Rashidi, Trans. A. Razmadze Math. Inst. 171, 195 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    G. Kumaran, N. Sandeep, J. Mol. Liq. 233, 262 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Rosseland, Astrophysik und Atom-Theoretische Grundlagen (Springer Verlag, Berlin, 1931) pp. 41--44Google Scholar
  28. 28.
    P.D. Ariel, Int. J. Comput. Math. Appl. 54, 69 (2007)Google Scholar
  29. 29.
    O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, J. Mol. Liq. 219, 24 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations