Lax pair, breather-to-soliton conversions, localized and periodic waves for a coupled higher-order nonlinear Schrödinger system in a birefringent optical fiber

  • Ze Zhang
  • Bo TianEmail author
  • Lei Liu
  • Yan Sun
  • Zhong Du
Regular Article


A coupled higher-order nonlinear Schrödinger system, which describes the ultrashort pulses in a birefringent optical fiber, is analytically investigated. For the complex envelopes of the electric field in the fiber, we construct a Lax pair which is different from that in the existing literature, and derive out the corresponding first- and second-order breather solutions. We present the first- and second-order breather-to-soliton conversion conditions, related to the strength of the higher-order linear and nonlinear effects. We find that the strength affects the peak numbers of solitons, and see the multi-peak soliton, W-shaped soliton, M-shaped soliton, anti-dark soliton and two kinds of periodic waves. From the second-order breather solutions under the first-order breather-to-soliton conversion condition, interactions between the breather and a W-shaped soliton, an M-shaped soliton or periodic waves are given. From the second-order breather solutions under the second-order breather-to-soliton conversion conditions, we present the interactions between the two M-shaped solitons, the two anti-dark solitons, a W-shaped soliton and an M-shaped soliton, or a W-shaped soliton and two kinds of the periodic waves. Those results might provide certain assistance for the studies on the birefringent optical fibers.


  1. 1.
    T.X. Tran, A. Podlipensky, P.S. Russell, F. Biancalana, J. Opt. Soc. Am. B 27, 1785 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    C. Lecaplain, M. Baumgartl, T. Schreiber, A. Hideur, Opt. Express 19, 26742 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, P. Grelu, Phys. Rev. Lett. 118, 243901 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    P. Ryczkowski, M. Närhi, C. Billet, J.M. Merolla, G. Genty, J.M. Dudley, Nat. Photon. 12, 221 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    N. Akhmediev, A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, London, 1997)Google Scholar
  6. 6.
    T.T. Jia, Y.T. Gao, Y.J. Feng, L. Hu, J.J. Su, L.Q. Li, C.C. Ding, Nonlinear Dyn., (2019)
  7. 7.
    D.H. Peregrine, J. Aust. Math. Soc. B 25, 16 (1983)CrossRefGoogle Scholar
  8. 8.
    N. Akhmediev, V.I. Korneev, Theor. Math. Phys. 69, 1089 (1986)CrossRefGoogle Scholar
  9. 9.
    Y.S. Tao, J.S. He, Phys. Rev. E 85, 026601 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    N. Vishnu Priya, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 88, 022918 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, Nat. Phys. 6, 790 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Xiong, J. Gan, Y. Wu, Phys. Rev. Lett. 119, 153901 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    A. Chowdury, A. Ankiewicz, N. Akhmediev, Proc. R. Soc. A 471, 20150130 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    L. Wang, J.H. Zhang, Z.Q. Wang, C. Liu, M. Li, F.H. Qi, R. Guo, Phys. Rev. E 93, 012214 (2016)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Chowdury, W. Krolikowski, Phys. Rev. E 96, 042209 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Wang, J.H. Zhang, C. Liu, M. Li, F.H. Qi, Phys. Rev. E 93, 062217 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Chowdury, D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 91, 032928 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    W.R. Sun, Ann. Phys. (Berlin) 529, 1 (2017)Google Scholar
  19. 19.
    L.Y. Cai, X. Wang, L. Wang, M. Li, Y. Liu, Y.Y. Shi, Nonlinear Dyn. 90, 2221 (2017)CrossRefGoogle Scholar
  20. 20.
    Q.M. Huang, Y.T. Gao, L. Hu, Appl. Math. Lett. 75, 135 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Chowdury, W. Krolikowski, Phys. Rev. E 95, 062226 (2017)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Guo, H.Q. Hao, Commun. Nonlinear Sci. Numer. Simul. 18, 2426 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    C. Liu, Z.Y. Yang, L.C. Zhao, W.L. Yang, Phys. Rev. E 91, 022904 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Du, B. Tian, Q.X. Qu, H.P. Chai, X.Y. Wu, Superlattices Microstruct. 112, 362 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, Phys. Rev. Lett. 111, 114101 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Y.V. Bludov, V.V. Konotop, N. Akhmediev, Eur. Phys. J. ST 185, 169 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Chen, J.M. Soto-Crespo, P. Grelu, Opt. Express 22, 27632 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    R. Guo, H.Q. Hao, L.L. Zhang, Nonlinear Dyn. 74, 701 (2013)CrossRefGoogle Scholar
  29. 29.
    C.C. Ding, Y.T. Gao, J.J. Su, G.F. Deng, S.L. Jia, Waves Random COmplex Meadia (2016)
  30. 30.
    K. Porsezian, P. Shanmugha Sundaram, A. Mahalingam, Phys. Rev. E 50, 1543 (1994)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. 23, 5610 (1987)CrossRefGoogle Scholar
  32. 32.
    Y. Kodama, J. Stat. Phys. 39, 597 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    L. Wang, Z.Q. Wang, J.H. Zhang, F.H. Qi, M. Li, Nonlinear Dyn. 86, 185 (2016)CrossRefGoogle Scholar
  34. 34.
    W.R. Sun, Nonlinear Dyn. 89, 383 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Wang, Y.J. Zhu, Z.Q. Wang, T. Xu, F.H. Qi, Y.S. Xue, J. Phys. Soc. Jpn. 85, 024001 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Ren, Z.Y. Yang, C. Liu, W.L. Yang, Phys. Lett. A 379, 2291 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    L. Wang, S. Li, F.H. Qi, Nonlinear Dyn. 85, 389 (2016)CrossRefGoogle Scholar
  38. 38.
    C. Liu, Z.Y. Yang, L.C. Zhao, W.L. Yang, Ann. Phys. 362, 130 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    H.H. Zhao, X.J. Zhao, H.Q. Hao, Appl. Math. Lett. 61, 8 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    D.Y. Liu, B. Tian, X.Y. Xie, Mod. Phys. Lett. B 31, 1750067 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    W.R. Sun, D.Y. Liu, X.Y. Xie, Chaos 27, 043114 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    X.Y. Gao, Appl. Math. Lett. 91, 165 (2019)MathSciNetCrossRefGoogle Scholar
  43. 43.
    J.J. Su, Y.T. Gao, C.C. Ding, Appl. Math. Lett. 88, 201 (2019)MathSciNetCrossRefGoogle Scholar
  44. 44.
    G.F. Deng, Y.T. Gao, X.Y. Gao, Waves Random Complex Media 28, 468 (2018)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Y.J. Feng, Y.T. Gao, X. Yu, Nonlinear Dyn. 91, 29 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations