Advertisement

Portable Vis-NIR-FORS instrumentation for restoration products detection: Statistical techniques and clustering

  • Nicoletta Odisio
  • Matteo CalabreseEmail author
  • Ambra Idone
  • Nicole Seris
  • Lorenzo Appolonia
  • Jean Marc Christille
Regular Article
  • 23 Downloads
Part of the following topical collections:
  1. Focus Point on Past and Present: Recent Advances in the Investigation of Ancient Materials by Means of Scientific Instrumental Techniques

Abstract.

The identification of modern restoration products with portable instrumentation will enable conservators and conservation scientists to gain information in a shorter time and at a reduced cost, compared to standard micro-destructive techniques. This study employs portable Visible Near-Infrared Fibre Optics Reflectance Spectrometry (Vis-NIR-FORS) as a diagnostic tool to identify and classify the considered products. We assembled a large library made of the most commonly used industrial products in the field of cultural heritage. Thirty products were applied in different concentrations on different substrates (e.g., marble, mortar, polychrome plaster, modern mural painting), and mock-up samples were investigated through Vis-NIR-FORS in the 350–2200 nm range. We then applied several statistical techniques and modern machine learning algorithms such as clustering to the entire database, to quantify the degree of correlation among different spectra. We show how using a multivariate, robust statistical approach can increase the signal-to-noise ratio, thus leading to a more precise identification and localisation of these products. Finally, the proposed procedure was also applied to spectra collected in situ on mural paintings.

References

  1. 1.
    M. Calabrese et al., Stud. Conserv. 63, S43 (2018)CrossRefGoogle Scholar
  2. 2.
    C. Miliani et al., Appl. Phys. A 106, 295 (2012)CrossRefGoogle Scholar
  3. 3.
    F. Rosi et al., Angew. Chem. 125, 5366 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Grabowski et al., J. Cult. Herit. 31, 1 (2018)CrossRefGoogle Scholar
  5. 5.
    C. Sessa et al., Anal. Bioanal. Chem. 406, 6735 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Miliani et al., Acc. Chem. Res. 43, 728 (2010)CrossRefGoogle Scholar
  7. 7.
    B. Doherty et al., Mol. Biomol. Spectrosc. 115, 330 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Mercurio et al., Rend. Online Soc. Geol. It. 42, 115 (2017)Google Scholar
  9. 9.
    M. Mercurio et al., Talanta 178, 147 (2018)CrossRefGoogle Scholar
  10. 10.
    C. Ricci et al., Talanta 69, 1221 (2006)CrossRefGoogle Scholar
  11. 11.
    F. Izzo, in 6th International Conference: YOCOCU, Youth in Conservation of Cultural Heritage, Matera, May 22–26, 2018 (CNR-IBAM, 2018)Google Scholar
  12. 12.
    M.E. Oddo et al., IOP Conf. Ser.: Mater. Sci. Eng. 364, 012002 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Grifa et al., Int. J. Conserv. Sci. 7, 885 (2016)Google Scholar
  14. 14.
    J. Delaney et al., Appl. Spetrosc. 64, 584 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Bacci et al., J. Cult. Herit. 4, 329 (2003)CrossRefGoogle Scholar
  16. 16.
    C. Cucci et al., Microchem. J. 138, 45 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Aceto et al., Anal. Methods 6, 1488 (2014)CrossRefGoogle Scholar
  18. 18.
    J.K. Delaney et al., Stud. Conserv. 59, 91 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Ricciardi, Angew. Chem. Int. Ed. 51, 5607 (2012)CrossRefGoogle Scholar
  20. 20.
    K.A. Dooley et al., Analyst 138, 4838 (2013)CrossRefGoogle Scholar
  21. 21.
    K.A. Dooley et al., Anal. Methods 9, 28 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Dong et al., Food Control 78, 144 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Tournié et al., J. Cult. Herit. 26, 28 (2017)CrossRefGoogle Scholar
  24. 24.
    M.R. Derrick, Infrared Spectroscopy in Conservation Science (The Getty Conservation Institute, Los Angeles, 1999)Google Scholar
  25. 25.
    H.G.M. Edwards, J.M. Chalmers (Editors), Raman Spectroscopy in Archeological and Art History (Royal Society of Chemistry, Cambridge, 2005)Google Scholar
  26. 26.
    L. Osete-Cortina, M.T. Doménech-Carbo, J. Chromatogr. A 1127, 228 (2006)CrossRefGoogle Scholar
  27. 27.
    J. Peris-Vicente et al., Anal. Chem. 81, 3180 (2009)CrossRefGoogle Scholar
  28. 28.
    L. Burgio, R.J.H. Clark, Spectrochim. Acta Part A 57, 1491 (2001)CrossRefGoogle Scholar
  29. 29.
    L. Chua et al., Microchem. J. 134, 246 (2017)CrossRefGoogle Scholar
  30. 30.
    F. Rosi et al., Microchem. J. 124, 898 (2016)CrossRefGoogle Scholar
  31. 31.
    C. Cucci et al., J. Cult. Herit. 14, 290 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Gabrieli et al., Angew. Chem. Int. Ed. 57, 7341 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Steger et al., Spectrochim. Acta Part A 195, 103 (2018)CrossRefGoogle Scholar
  34. 34.
    M. Raudino et al., Langmuir 33, 5675 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Baglioni et al., Angew. Chem. 130, 7477 (2018)CrossRefGoogle Scholar
  36. 36.
    F. Izzo et al., Construct. Build Mater. 117, 129 (2016)CrossRefGoogle Scholar
  37. 37.
    F. Rosi et al., Anal. Bioanal. Chem. 395, 2097 (2009)CrossRefGoogle Scholar
  38. 38.
    M. Bacci et al., J. Am. Inst. Conserv. 46, 27 (2007)CrossRefGoogle Scholar
  39. 39.
    A. Jain, R. Dubes, Algorithms for Clustering Data (Prentice-Hall, Englewood Cliffs, NJ, 1988)Google Scholar
  40. 40.
    C. Edelbrock, Multivariate Behav. Res. 14, 367 (1979)CrossRefGoogle Scholar
  41. 41.
    S.C. Johnson, Psychometrika 32, 241 (1966)CrossRefGoogle Scholar
  42. 42.
    P. Eilers, H. Boelens, Baseline Correction with Asymmetric Least Squares Smoothing, unpublished (2005)Google Scholar
  43. 43.
    A. Kwiatkowski et al., Metrol. Meas. Syst. 17, 549 (2010)CrossRefGoogle Scholar
  44. 44.
    R. Ploeger et al., Appl. Spectrosc. 65, 429 (2011)CrossRefGoogle Scholar
  45. 45.
    M. Vagnini et al., Anal. Bional. Chem. 395, 2107 (2009)CrossRefGoogle Scholar
  46. 46.
    V. Pintus et al., Anal. Bional. Chem. 399, 2961 (2011)CrossRefGoogle Scholar
  47. 47.
    E. Tesser et al., J. Cult. Herit. 31, 72 (2018)CrossRefGoogle Scholar
  48. 48.
    M. Favaro et al., Polym. Degrad. Stabil. 91, 3083 (2006)CrossRefGoogle Scholar
  49. 49.
    A. Lo Monaco, in Proceedings of SPIE, edited by L. Pezzati, R. Salimbeni, vol. 8084, O3A: Optics for Arts, Architecture, and Archaeology III (SPIE, 2011)  https://doi.org/10.1117/12.889147
  50. 50.
    D. Scalarone et al., J. Anal. Apll. Pyrolysis 64, 345 (2002)CrossRefGoogle Scholar
  51. 51.
    D. Scalarone et al., J. Mass Spectrom. 38, 607 (2003)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nicoletta Odisio
    • 1
  • Matteo Calabrese
    • 2
    Email author
  • Ambra Idone
    • 1
  • Nicole Seris
    • 1
  • Lorenzo Appolonia
    • 1
  • Jean Marc Christille
    • 2
  1. 1.Struttura Analisi Scientifiche e Progetti CofinanziatiSoprintendenza per i Beni e le Attività Culturali della Regione Autonoma Valle d’AostaAostaItaly
  2. 2.Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA)Nus (AO)Italy

Personalised recommendations