Influence of target material impurities on physical results in relativistic heavy-ion collisions

  • D. Banaś
  • A. Kubala-Kukuś
  • M. RybczyńskiEmail author
  • I. Stabrawa
  • G. Stefanek
Open Access
Regular Article


This paper presents the studies on the influence of the target material impurities on physical observables measured in heavy-ion collisions collected by fixed target experiments. It mainly concerns the measurements of multiplicity fluctuations, which can be used in searches for the critical point of strongly interacting matter, e.g. in the NA61/SHINE fixed-target experiment at CERN SPS. The elemental composition of the targets used in the NA61/SHINE experiment was determined applying the wavelength dispersive X-ray fluorescence (WDXRF) technique. The influence of the measured target impurities on multiplicity distributions and scaled variance was estimated using simulated events. A multiplicity analysis technique which limits the influences coming from target impurities was proposed.


  1. 1.
    S. Gupta, X. Luo, B. Mohanty, H.G. Ritter, N. Xu, Science 332, 1525 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    P. de Forcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, JHEP 04, 001 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Fodor, S.D. Katz, JHEP 04, 050 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    R.V. Gavai, Pramana 84, 757 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Stephanov, Int. J. Mod. Phys. A 20, 4387 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. C 77, 024903 (2008)CrossRefGoogle Scholar
  8. 8.
    M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. D 60, 114028 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    NA49-future Collaboration (N. Antoniou), CERN-SPSC-2006-034, CERN-SPSC-P-330Google Scholar
  10. 10.
    NA61 Collaboration (N. Abgrall), CERN-SPSC-2008-018, CERN-SPSC-SR-033Google Scholar
  11. 11.
    B.K. Agarwal, X-ray Spectroscopy (Springer-Verlag, Berlin, Heidelberg, 1991)Google Scholar
  12. 12.
    R. Van Grieken, A. Markowicz (Editors), Handbook of X-ray Spectrometry (Marcel Dekker, New York, 1993)Google Scholar
  13. 13.
    B. Dziunikowski, Energy Dispersive X-Ray Fluorescence Analysis (Państwowe Wydawnictwo Naukowe PWN, Warszawa, 1989)Google Scholar
  14. 14.
    J.P. Willis, A.R. Duncan, Understanding XRF Spectrometry (PANalytical B.V., Almelo, 2008)Google Scholar
  15. 15.
  16. 16.
  17. 17.
    Axios, SuperQ5 Reference Manual (PANalytical B.V., Almelo, 2005)Google Scholar
  18. 18.
    M. Gyulassy, X.N. Wang, Comput. Phys. Commun. 83, 307 (1994) nucl-th/9502021ADSCrossRefGoogle Scholar
  19. 19.
    H.L. Bradt, B. Peters, Phys. Rev. 77, 54 (1950)ADSCrossRefGoogle Scholar
  20. 20.
    G.D. Westfall, L.W. Wilson, P.J. Lindstrom, H.J. Crawford, D.E. Greiner, H.H. Heckman, Phys. Rev. C 19, 1309 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    J. de Laeter, J. Boehlke, P. De Bievre et al., Pure Appl. Chem. 75, 683 (2009)CrossRefGoogle Scholar
  22. 22.
    NA61 Collaboration (N. Abgrall et al.), JINST 9, P06005 (2014) arXiv:1401.4699 [physics.ins-det]CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • D. Banaś
    • 1
  • A. Kubala-Kukuś
    • 1
  • M. Rybczyński
    • 1
    Email author
  • I. Stabrawa
    • 1
  • G. Stefanek
    • 1
  1. 1.Institute of PhysicsJan Kochanowski UniversityKielcePoland

Personalised recommendations