Advertisement

Effect of 8 MeV electron beam irradiation on the structural, optical and electrical properties of a PANI-MnWO4 nanocomposite

  • N. Aloysius Sabu
  • Xavier Francis
  • S. Ganesh
  • Thomas VargheseEmail author
Regular Article
  • 10 Downloads

Abstract.

The effect of 8MeV electron beam irradiation on the structural, optical and electrical properties of a PANI-MnWO4 nanocomposite synthesized by in situ chemical oxidative polymerization in the presence of MnWO4 nanoparticles was investigated. The dose-dependent effect of electron irradiation was studied using various characterization techniques, such as X-ray diffraction, Fourier-transformed infrared spectroscopy, UV-vis absorption spectroscopy and impedance analyser. Systematic investigation based on the results of structural studies confirms that electron beam irradiation induces defects and particle size variation on the PANI-MnWO4 nanocomposite, which in turn results in improvements in optical absorption, band gap, DC and AC conductivity, and dielectric constant and loss tangent.

References

  1. 1.
    A.V. Krasheninnikov, Nordlund K. Ion, J. Appl. Phys. 107, 071301 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    E.J. Yun et al., J. Appl. Phys. 105, 123509 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    K. Jeon et al., Curr. Appl. Phys. 14, 1591 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    K.K. Babitha et al., Mater. Charact. 98, 222 (2014)CrossRefGoogle Scholar
  5. 5.
    P.A. Sheena et al., Bull. Mater. Sci. 38, 825 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Sreedevi et al., Micron 88, 1 (2016)CrossRefGoogle Scholar
  7. 7.
    K.P. Priyanka et al., J. Nanotechnol. 2013, 580308 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Bhadra, D. Khastgir, Polym. Degrad. Stab. 92, 1824 (2007)CrossRefGoogle Scholar
  9. 9.
    N. Aloysius Sabu et al., Radiat. Phys. Chem. 123, 1 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Sangappa et al., Nucl. Instrum. Methods Phys. Res. B 266, 3975 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    E. Bohler et al., Chem. Soc. Rev. 42, 9219 (2013)CrossRefGoogle Scholar
  12. 12.
    I.G. Gonzalez et al., Nanoscale 8, 11340 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    R.C. Oliveira et al., J. Phys. Chem. C 120, 12254 (2016)CrossRefGoogle Scholar
  14. 14.
    L. Al-Mashat et al., J. Phys. Chem. C 114, 16168 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Shi et al., Synth. Metals 159, 2525 (2009)CrossRefGoogle Scholar
  16. 16.
    S.B. Kondawar, M.D. Deshpande, S.P. Agrawal, J. Compos. Mater. 2, 32 (2012)Google Scholar
  17. 17.
    Z.F. Li, E. Ruckenstein, Langmuir ACS J. Surf. Colloids 18, 6956 (2002)CrossRefGoogle Scholar
  18. 18.
    A. Mostafaei, A. Zolriasatein, Prog. Nat. Sci.: Mater. Int. 22, 273 (2012)CrossRefGoogle Scholar
  19. 19.
    I.Y. Sapurina, M.A. Shishov, New Polymers for Special Applications (Aliton de Souza Gome, 2012) pp. 251--312Google Scholar
  20. 20.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edition (Addison-Wesley Publishing Company, California, 1978)Google Scholar
  21. 21.
    Thomas Varghese, K.M. Balakrishna, Nanotechnology: An Introduction to Synthesis, Properties and Applications of Nanomaterials (Atlantic Publishers, New Delhi, 2011)Google Scholar
  22. 22.
    G.M. Fernández et al., Chem. Rev. 104, 4063 (2004)CrossRefGoogle Scholar
  23. 23.
    F. Muhammad, K. Syed, Bull. Korean Chem. Soc. 34, 99 (2013)CrossRefGoogle Scholar
  24. 24.
    N. Joseph, J. Varghese, M.T. Sebastian, RSC Adv. 5, 20459 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Banerjee, S. Sarmah, A. Kumar, J. Opt. 38, 124 (2009)CrossRefGoogle Scholar
  26. 26.
    W.S. Huang, A.G. MacDiarmid, Polymer 34, 1833 (1993)CrossRefGoogle Scholar
  27. 27.
    M. Canales et al., J. Phys. Chem. B 118, 11552 (2014)CrossRefGoogle Scholar
  28. 28.
    K.C. Sajjan et al., J. Mater. Sci.: Mater. Electron. 25, 1237 (2014)Google Scholar
  29. 29.
    P. Ghosh et al., J. Phys. D 39, 3047 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    R.M. Hill, A.K. Jonscher, J. Non-Cryst. Solids 32, 53 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    M.O. Ansari et al., New J. Chem. 39, 8381 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J.R. Laghari, A.N. Hammoud, IEEE Trans. Nucl. Sci. 37, 1076 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    U.A. Sevil et al., Radiat. Phys. Chem. 67, 575 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    S.M. Reda, A.M. Al-Ghannam, Adv. Mater. Phys. Chem. 2, 75 (2012)CrossRefGoogle Scholar
  35. 35.
    Shumaila et al., Curr. Appl. Phys. 11, 217 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  37. 37.
    A.K. Himanshu et al., Radiat. Effects Defects Solids 169, 73 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    D.D. Chung, Composite Materials: Science and Applications (Springer Science & Business Media, New York, 2010)Google Scholar
  39. 39.
    S. Tiptipakorn et al., Adv. Mater. Res. 861, 550 (2012)Google Scholar
  40. 40.
    J. Bhadra et al., Arab. J. Chem. 10, 664 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Katsumi, H. Shigenori, I. Yoshio, Jpn. J. Appl. Phys. 21, L569 (1982)CrossRefGoogle Scholar
  42. 42.
    A.Shakoor, T.Z. Rizvi, A. Nawaz, J. Mater. Sci.: Mater. Electron. 22, 1076 (2011)Google Scholar
  43. 43.
    Y.T. Ravikiran et al., Synth. Metals 156, 1139 (2006)CrossRefGoogle Scholar
  44. 44.
    B.M. Greenhoe et al., J. Polym. Sci. Part B 54, 1918 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanoscience Research CentreDepartment of Physics, Nirmala CollegeMuvattupuzhaIndia
  2. 2.Department of PhysicsNewman CollegeThodupuzhaIndia
  3. 3.Department of PhysicsMar Athanasius CollegeKothamangalamIndia
  4. 4.Department of PhysicsMangalore UniversityMangalagangotriIndia

Personalised recommendations