Scanning tunneling microscopy/spectroscopy study of In/In4Se3 (100) nanosystem

  • Pavlo GaliyEmail author
  • Piotr Mazur
  • Antoni Ciszewski
  • Taras Nenchuk
  • Igor Yarovets
Regular Article
Part of the following topical collections:
  1. Focus Point on Nanotechnology, Nanomaterials and Interfaces


The present paper provides the results of structural studies concerning formation of self-assembled indium deposited nanostructures on the (100) surface of In4Se3 layered semiconductor. We used to study growth orientation of indium-induced nanostructures exploiting small rates and low times of indium deposition by scanning tunneling spectroscopy (STM). We carry out our studies using In4Se3 crystals grown with rather different concentrations of the over-stoichiometric indium in the melt. It has been established that shape of subsequent indium-deposited nanostructures varies from 3D islands, in the case of low-indium-doped crystals, to elongated nanowires, for highly doped ones. Based on a high-resolution STM study, we show that self-assembled quasi-periodical nanowires are oriented along the c -axis of (100) In4Se3 surface. The observed nanostructures have metallic origin as it was acquired by the current imaging tunneling spectroscopy (CITS) studies. We considered that formation of different-shaped indium-deposited nanostructures is powered by concentration of indium nuclei on furrowed (100) In4Se3 surface, which is modulated by the degree of the over-stoichiometric indium during crystal growth subsequently intercalated into the interlayer gap.


  1. 1.
    S. Acierno, R. Baretta, R. Luciano, F. Marotti de Sciarra, P. Russo, Compos. Struct. 174, 12 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Baretta, F. Marotti de Sciarra, M. Diaco, Acta Mech. 225, 1945 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Baretta, M. Brcic, M. Canadija, R. Luciano, F. Marotti de Sciarra, Eur. J. Mech. A/Solids 65, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Patti, R. Baretta, F. Marotti de Sciarra, G. Mensitieri, C. Menna, P. Russo, Compos. Struct. 131, 282 (2015)CrossRefGoogle Scholar
  5. 5.
    D.A. Bandurin, A.V. Tyurnina, G.L. Yu et al., Nat. Nanotechnol. 12, 223 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    W.R. McKinnon, R.R. Haering, Physical mechanisms of intercalation: Modern Aspects in Electrochemistry, edited by Ralph E. White, J.O’M. Bockris, B.E. Conway (Plenum Press, New York, 1983) chapt. 5Google Scholar
  7. 7.
    A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)CrossRefGoogle Scholar
  8. 8.
    P.V. Galiy, A.V. Musyanovych, Ya.M. Fiyala, Physica E 35, 88 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Y.S. Lim, M. Jeong, W.-S. Seo, J.-H. Lee, C.-H. Park, M. Snajder, L.Y. Kharkhalis, D.M. Bercha, J. Yang, J. Phys. D 46, 275304 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Fukutani, T. Sato, P.V. Galiy, K. Sugawara, T. Takahashi, Phys. Rev. B 93, 205156 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    G.M. Whitesides, J.K. Kriebel, B.T. Mayers, Self-Assembly and Nanostructured Materials. Nanoscale Assembly. Nanostructure Science and Technology, edited by Wilhelm T.S. Huck (Springer, MA, Boston, 2005)Google Scholar
  12. 12.
    U. Schwarz, H. Hillebrecht, H.J. Deiseroth, R. Walter, Z. Kristallogr. 210, 342 (1995)CrossRefGoogle Scholar
  13. 13.
    K. Fukutani, Y. Miyata, I. Matsuzaki, P.V. Galiy, P. Dowben, T. Sato, T. Takahashi, J. Phys. Soc. Jpn. 84, 074710 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    I. Horcas, R. Fernandez, J.M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    P.V. Galiy, T.M. Nenchuk, O.R. Dveriy, A. Ciszewski, P. Mazur, S. Zuber, Physica E 41, 465 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    P.V. Galiy, T.M. Nenchuk, O.R. Dveriy, A. Ciszewski, P. Mazur, S. Zuber, Chem. Metals Alloys 4, 1 (2011)Google Scholar
  17. 17.
    M. Sznajder, K.Z. Rushchanskii, L.Yu. Kharkhalis, D.M. Bercha, Phys. Status Solidi (b) 243, 592 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    D.M. Bercha, K.E. Glukhov, M. Sznajder, Acta Phys. Pol. A 119, 720 (2011)CrossRefGoogle Scholar
  19. 19.
    V.G. Dubrovskii, Nucleation theory and growth of nanostructures (Springer-Verlag Berlin Heidelberg, Berlin, 2014)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pavlo Galiy
    • 1
    Email author
  • Piotr Mazur
    • 2
  • Antoni Ciszewski
    • 2
  • Taras Nenchuk
    • 1
  • Igor Yarovets
    • 1
  1. 1.Electronics and Computer Technology DepartmentIvan Franko Lviv National UniversityLvivUkraine
  2. 2.Institute of Experimental PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations