M-derivative applied to the dispersive optical solitons for the Schrödinger-Hirota equation

  • H. Yépez-Martínez
  • J. F. Gómez-AguilarEmail author
Regular Article


Optical dispersive soliton solutions to the fractional Schrödinger-Hirota equation (SHE) in an optical fiber involving M-derivative of order \( \alpha\) are studied in this paper. The considered analytical method is based on the Jacobi elliptic function (JEF) ansatz. We found new bright, dark and singular optical soliton solutions that are relevant in optoelectronics problems in optical fibers. Some important constraints conditions were founded between the parameters of the JEF solitons solutions. The main result of the present work shows that the JEF ansatz is an important and efficient mathematical method to obtain new solutions for solving problems in optical fibers. Typical behaviour of the obtained soliton solutions is depicted in some interesting simulations.


  1. 1.
    A. Biswas, Opt. Quantum Electron. 35, 979 (2003)CrossRefGoogle Scholar
  2. 2.
    J. Vega-Guzman, A. Biswas, M.F. Mahmood, Q. Zhou, S.P. Moshokoa, M. Belic, Optik 171, 114 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    A. Biswas, Opt. Commun. 239, 457 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    A. Biswas, S. Konar, Introduction to Non-Kerr Law Optical Solitons (CRC Press, Boca Raton, 2006)Google Scholar
  5. 5.
    A. Biswas, A.J.M. Jawad, W.N. Manrakhan, A.K. Sarma, K.R. Khan, Opt. Laser Technol. 44, 2265 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    A. Biswas, K. Khan, A. Rahman, A. Yildirim, T. Hayat, O.M. Aldossary, J. Optoelectron. Adv. Mater. 14, 571 (2012)Google Scholar
  7. 7.
    C.Q. Dai, Y.Y. Wang, Y. Fan, D.G. Yu, Nonlinear Dyn. 92, 1351 (2018)CrossRefGoogle Scholar
  8. 8.
    Y.Y. Wang, L. Chen, C.Q. Dai, J. Zheng, Y. Fan, Nonlinear Dyn. 90, 1269 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Mirzazadeh, A.H. Arnous, M.F. Mahmood, E. Zerrad, A. Biswas, Nonlinear Dyn. 81, 277 (2015)CrossRefGoogle Scholar
  10. 10.
    R. Sassaman, A. Biswas, Nonlinear Dyn. 61, 23 (2010)CrossRefGoogle Scholar
  11. 11.
    Y.Y. Wang, C.Q. Dai, Y.Q. Xu, J. Zheng, Y. Fan, Nonlinear Dyn. 92, 1261 (2018)CrossRefGoogle Scholar
  12. 12.
    W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, Z. Wei, Nanotechnology 29, 174002 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    W. Liu, Y.N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, Z. Wei, Photon. Res. 6, 220 (2018)CrossRefGoogle Scholar
  14. 14.
    A. Biswas, Nonlinear Dyn. 59, 423 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Biswas, Nonlinear Dyn. 58, 345 (2009)CrossRefGoogle Scholar
  16. 16.
    V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)ADSGoogle Scholar
  17. 17.
    R.K. Dowluru, P.R. Bhima, J. Opt. 40, 132 (2011)CrossRefGoogle Scholar
  18. 18.
    P. Green, A. Biswas, Commun. Nonlinear Sci. Numer. Simul. 15, 3865 (2010)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A.H. Bhrawy, A.A. Alshaery, E.M. Hilal, W.N. Manrakhan, M. Savescu, A. Biswas, J. Nonlinear Opt. Phys. Mat. 23, 1450014 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Z.Y. Zhang, Z.H. Liu, X.J. Miao, Y.Z. Chen, Appl. Math. Comput. 216, 3064 (2010)MathSciNetGoogle Scholar
  21. 21.
    E.C. Aslan, F. Tchier, M. Inc, Superlattices Microstruct. 105, 48 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    D. Fandio Jubgang jr., A.M. Dikandé, A. Sunda-Meya, Phys. Rev. A 92, 053850 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    D. Feng, J. Jiao, G. Jiang, Phys. Lett. A 382, 2081 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Elsayed M.E. Zayed, Abdul-Ghani Al-Nowehy, Waves Random Complex Media 27, 420 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Elsayed M.E. Zayed, Abdul-Ghani Al-Nowehy, Optik 139, 123 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    E. Yaşar, E. Yaşar, New Trends Math. Sci. 6, 116 (2018)Google Scholar
  27. 27.
    X. Geng, Y.Lv. Darboux, Nonlinear Dyn. 69, 1621 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Kumar, K. Singh, R.K. Gupta, Pramana 79, 41 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, London, 1974)Google Scholar
  30. 30.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)Google Scholar
  31. 31.
    J. Sousa, E.C. de Oliveira, On the local $M$-derivative, arXiv:1704.08186 (2017)Google Scholar
  32. 32.
    F. Mainardi, R. Gorenflo, J. Comput. Appl. Math. 118, 283 (2000)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions-Related Topics and Applications (Springer, Berlin, 2014)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad Autónoma de la Ciudad de MéxicoMéxico D.F.Mexico
  2. 2.CONACyT - Tecnológico Nacional de México/CENIDETCuernavacaMexico

Personalised recommendations