Advertisement

Research on a dual-function tactile sensor based on composite

  • Linna ZhouEmail author
  • Lan Qin
Regular Article
  • 21 Downloads

Abstract.

Sensors applied on robot skin have developed rapidly, as various kinds of unique function sensors have been designed to detect circumstances like vision, active touch, thermal sensitivity, etc. Some multi-function containing two or more functions above are proposed which are capable to measure multiple data simultaneously. A novel structure is presented in this article which is able to sense the three-axis force loaded on sensor and the temperature around in a limited area. The structure consists of four sector thin composites; three of them are conductive rubbers to detect three-axis force, another one is thermo-sensitive rubber to sense the temperature. A theoretical model and simulation results show that the novel structure of the sensor is feasible to accomplish the two functions.

References

  1. 1.
    H.R. Nicholls, Int. J. Robot. Res. 8, 3 (1989)CrossRefGoogle Scholar
  2. 2.
    Ravinder S. Dahiya, Giorgio Metta, Maurizio Valle et al., Robot. IEEE Trans. 26, 1 (2010)CrossRefGoogle Scholar
  3. 3.
    H. Yousef, M. Boukallel, K. Althoefer, Sensors Actuat. A Phys. 167, 71 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Stassi, V. Cauda, G. Canavese et al., Sensors 14, 5296 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Chiara, Totaro Massimo, S. Ali, M. Barbara, B. Lucia, Sci. Rep. 5, 8788 (2015)CrossRefGoogle Scholar
  6. 6.
    Jin Ge, Li Sun, Fu-Rui Zhang et al., Adv. Mater. 28, 4 (2016)Google Scholar
  7. 7.
    P. Steve, K. Hyunjin, V. Michael et al., Mater. Views 26, 43 (2014)Google Scholar
  8. 8.
    S.Y. Kim, S. Park, H.W. Park, D.H. Park, D.H. Kim, Adv. Mater. 27, 4178 (2015)CrossRefGoogle Scholar
  9. 9.
    QinLan, Li Qing, Sun Xiankui, Chinese J. Sensors Actuat. 19, 824 (2006) (in Chinese)Google Scholar
  10. 10.
    Li Qing, Research on the Tactile Sensing Costume of Intelligent Robots Based on Conductive Rubber, dissertation (Chongqing University) (in Chinese)Google Scholar
  11. 11.
    C.S. Mclachlan, Newnham R.E. Blasziewiczm, J. Am. Ceram. Soc. 73, 217 (1990)CrossRefGoogle Scholar
  12. 12.
    W. Peng, D. Tianhuai, X. Feng, Q. Yuanzhen, Acta Mater. Composit. Sin. 21, 6 (2004)Google Scholar
  13. 13.
    C. Rajagopal, M. Satyam, J. Appl. Phys. 11, 5536 (1978)CrossRefGoogle Scholar
  14. 14.
    A.L. McWhorter, PhD dissertation (MIT, Cambridge, MA, 1955)Google Scholar
  15. 15.
    F.N. Hooge, IEEE Trans. Electron. Devices 41, 1926 (1994)CrossRefGoogle Scholar
  16. 16.
    B. Bea, B.R. Flachsbart, K. Park et al., J. Micromech. Microeng. 14, 1597 (2004)CrossRefGoogle Scholar
  17. 17.
    A. Alvin Barlian, P. Woo-Tae, Joseph R. Mallon et al., Proc. IEEE 97, 3 (2009)CrossRefGoogle Scholar
  18. 18.
    Z. Lin, Z. Zhi-jie, Z. Hua, Instrum. Techn. Sensor (2018)  https://doi.org/10.3969/j.issn.1002-1841.2018.04.003

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chongqing University, Main teaching buildingChongqingChina
  2. 2.College of Optoelectronic EngineeringChongqing University, Key Laboratory of Optoelectronic Technology and Systems of Ministry of EducationChongqingChina

Personalised recommendations