Advertisement

Nonlinear vibration analysis of different types of functionally graded beams using nonlocal strain gradient theory and a two-step perturbation method

  • Yang Gao
  • Wan-shen XiaoEmail author
  • Haiping Zhu
Regular Article

Abstract.

In the framework of nonlocal strain gradient theory, the nonlinear vibration of beams subjected to different types of functionally graded distribution is studied in this paper. They are beams with bottom-up functionally graded distribution, beams with inside-out functionally graded distribution and beams with mirror symmetrical functionally graded distribution. The effective material properties of FGM beams are defined based on the proposed assumptions and approximate models. Different displacement functions that can satisfy the stress boundary conditions are used to analyze respective types of FGM beam. The governing equations of nonlinear vibration, including a material length-scale parameter and a nonlocal parameter are derived via the principle of Hamilton, then solved by a two-step perturbation method. With the aid of the obtained analytical solutions, the effects of various parameters on nonlinear vibration problem are studied in detail, including temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume index and different kinds of functionally graded distribution. Two new approaches are suggested in this study to change linear and nonlinear frequencies of the beam.

References

  1. 1.
    G. Romano, R. Barretta, Compos. Part B Eng. 114, 184 (2017)CrossRefGoogle Scholar
  2. 2.
    J.M. Gere, B.J. Goodno, Mechanics of Materials, 6th ed. (McGraw-Hill, New York, 1972)Google Scholar
  3. 3.
    E.A. Shahrbabaki, Eur. J. Mech. Solid. 71, 122 (2018)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Arefi, Eur. J. Mech. Solid. 70, 226 (2018)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    N. Alamanos, C. Bertulani, A. Bonaccorso, Eur. Phys. J. Plus 132, 37 (2017)CrossRefGoogle Scholar
  6. 6.
    A.P.S. Goswami, V.S. Pandit, Eur. Phys. J. Plus 131, 393 (2016)CrossRefGoogle Scholar
  7. 7.
    I.S.M. Fokou, C.N.D. Buckjohn, M.S. Siewe, C. Tchawoua, Eur. Phys. J. Plus 132, 344 (2017)CrossRefGoogle Scholar
  8. 8.
    T. Dai, H.L. Dai, Appl. Math. Model. 45, 900 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    I.S.M. Fokou, C.N.D. Buckjohn, M.S. Siewe, C. Tchawoua, Eur. Phys. J. Plus 132, 344 (2017)CrossRefGoogle Scholar
  10. 10.
    M.R. Barati, Eur. Phys. J. Plus 133, 170 (2018)CrossRefGoogle Scholar
  11. 11.
    F. Ebrahimi, A. Jafari, M.R. Barati, Eur. Phys. J. Plus 132, 521 (2017)CrossRefGoogle Scholar
  12. 12.
    M.R. Barati, H. Shahverdi, Eur. Phys. J. Plus 132, 167 (2017)CrossRefGoogle Scholar
  13. 13.
    D. Jha, T. Kant, R.K. Singh, Compos. Struct. 96, 833 (2013)CrossRefGoogle Scholar
  14. 14.
    H.L. Dai, Y.N. Rao, T. Dai, Compos. Struct. 152, 199 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Simşek, Compos. Struct. 133, 968 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Hao, C. Wei, Compos. Struct. 141, 253 (2016)CrossRefGoogle Scholar
  17. 17.
    D.K. Nguyen, Q.H. Nguyen, T.T. Tran, V.T. Bui, Acta Mech. 228, 141 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Pydah, A. Sabale, Compos. Struct. 160, 867 (2017)CrossRefGoogle Scholar
  19. 19.
    M.Z. Nejad, A. Hadi, Int. J. Eng. Sci. 105, 1 (2016)CrossRefGoogle Scholar
  20. 20.
    M.Z. Nejad, A. Hadi, Int. J. Eng. Sci. 106, 1 (2016)CrossRefGoogle Scholar
  21. 21.
    M.Z. Nejad, A. Hadi, A. Rastgoo, Int. J. Eng. Sci. 103, 1 (2016)CrossRefGoogle Scholar
  22. 22.
    T.T. Nguyen, J. Lee, Compos. Struct. 191, 1 (2018)CrossRefGoogle Scholar
  23. 23.
    C.Y. Wang, Y.Y. Zhang, C.M. Wang, V.B. Tan, J. Nanosci. Nanotechnol. 7, 4221 (2007)CrossRefGoogle Scholar
  24. 24.
    M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, E. Hernandez, Philos. Trans. R. Soc. A 362, 2065 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    H. Bellifa, K.H. Benrahou, A.A. Bousahla, A. Tounsi, S.R. Mahmoud, Struct. Eng. Mech. 62, 695 (2017)Google Scholar
  26. 26.
    K. Bouafia, A. Kaci, M.S.A. Houari, A. Benzair, A. Tounsi, Smart Struct. Syst. 19, 115 (2017)CrossRefGoogle Scholar
  27. 27.
    F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, Steel Compos. Struct. 20, 227 (2016)CrossRefGoogle Scholar
  28. 28.
    A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)CrossRefGoogle Scholar
  29. 29.
    N. Shafiei, M. Kazemi, M. Safi, M. Ghadiri, Int. J. Eng. Sci. 106, 77 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Shafiei, M. Kazemi, M. Ghadiri, Appl. Phys. A 122, 728 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    N. Shafiei, M. Kazemi, M. Ghadiri, Int. J. Eng. Sci. 102, 12 (2016)CrossRefGoogle Scholar
  32. 32.
    N. Shafiei, M. Kazemi, M. Ghadiri, Int. J. Eng. Sci. 106, 77 (2016)CrossRefGoogle Scholar
  33. 33.
    F. Ebrahimi, E. Salari, Compos. Struct. 128, 363 (2015)CrossRefGoogle Scholar
  34. 34.
    F. Ebrahimi, E. Salari, Compos. Part B Eng. 78, 272 (2015)CrossRefGoogle Scholar
  35. 35.
    F. Ebrahimi, E. Salari, Acta Astronaut. 113, 29 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M. Ghadiri, A. Rajabpour, A. Akbarshahi, Appl. Math. Model. 50, 676 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    I. Belkorissat et al., Steel Compos. Struct. 18, 1063 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Mokhtar, H. Heireche, A.A. Bousahla, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, Smart Struct. Syst. 21, 397 (2018)Google Scholar
  39. 39.
    J.P. Shen, C. Li, Compos. Struct. 172, 210 (2017)CrossRefGoogle Scholar
  40. 40.
    K. Kiani, Int. J. Mech. Sci. 138, 1 (2018)CrossRefGoogle Scholar
  41. 41.
    A.K. Patra, S. Gopalakrishnan, R. Ganguli, Int. J. Mech. Sci. 135, 176 (2018)CrossRefGoogle Scholar
  42. 42.
    H.B. Khaniki, Physica E 99, 310 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    M. Tuna, M. Kirca, Int. J. Eng. Sci. 105, 80 (2016)CrossRefGoogle Scholar
  44. 44.
    S.A. Faghidian, Int. J. Eng. Sci. 129, 96 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    P. Khodabakhshi, J.N. Reddy, Int. J. Eng. Sci. 95, 60 (2015)CrossRefGoogle Scholar
  46. 46.
    J. Fernández-Sáez, R. Zaera, J.A. Loya, J.N. Reddy, Int. J. Eng. Sci. 99, 107 (2016)CrossRefGoogle Scholar
  47. 47.
    M. Fakher, S. Rahmanian, S. Hosseini-Hashemi, Int. J. Mech. Sci. 150, 445 (2019)CrossRefGoogle Scholar
  48. 48.
    N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids. 41, 1825 (1993)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    F. Yang, A.C. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)CrossRefGoogle Scholar
  50. 50.
    R.D. Mindlin, Int. J. Solids Struct. 1, 417 (1965)CrossRefGoogle Scholar
  51. 51.
    D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids. 51, 1477 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)CrossRefGoogle Scholar
  53. 53.
    G.C. Tsiatas, Int. J. Solids Struct. 46, 2757 (2009)CrossRefGoogle Scholar
  54. 54.
    H.M. Ma, X.L. Gao, J.N. Reddy, J. Mech. Phys. Solids 56, 3379 (2008)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    M. Simşek, M. Aydin, H.H. Yurtcu, Acta Mech. 226, 3807 (2015)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Y.S. Li, E. Pan, Int. J. Eng. Sci. 97, 40 (2015)CrossRefGoogle Scholar
  57. 57.
    M.A. Attia, Int. J. Eng. Sci. 115, 73 (2017)CrossRefGoogle Scholar
  58. 58.
    M.A. Attia, S.A. Mohamed, Appl. Math. Model. 41, 195 (2017)MathSciNetCrossRefGoogle Scholar
  59. 59.
    N. Shafiei, M. Kazemi, M. Ghadiri, Appl. Phys. A 122, 728 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    A. Bekir, C. Oumlmer, Compos. Part B Eng. 55, 263 (2013)CrossRefGoogle Scholar
  61. 61.
    A. Bekir, C. Oumlmer, J. Vib. Control 20, 606 (2014)MathSciNetCrossRefGoogle Scholar
  62. 62.
    M. Rahaeifard, Compos. Part B 82, 205 (2015)CrossRefGoogle Scholar
  63. 63.
    C.W. Lim, G. Zhang, J.N. Reddy, J. Mech. Phys. Solids 78, 298 (2015)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    L. Li, Y. Hu, X. Li, Int. J. Mech. Sci. 115, 135 (2016)CrossRefGoogle Scholar
  65. 65.
    S. El-Borgi, P. Rajendran, M.I. Friswell, Compos. Struct. 186, 274 (2018)CrossRefGoogle Scholar
  66. 66.
    L. Lu, X. Guo, J. Zhao, Int. J. Eng. Sci. 116, 12 (2017)CrossRefGoogle Scholar
  67. 67.
    L. Li, X. Li, Y. Hu, Int. J. Eng. Sci. 102, 77 (2016)CrossRefGoogle Scholar
  68. 68.
    F. Ebrahimi, M.R. Barati, Mech. Adv. Mater. Struct. 1, 11 (2017)Google Scholar
  69. 69.
    X. Li, L. Li, Y. Hu, Compos. Struct. 165, 250 (2017)CrossRefGoogle Scholar
  70. 70.
    G.L. She, F.G. Yuan, Y.R. Ren, Int. J. Eng. Sci. 130, 62 (2018)CrossRefGoogle Scholar
  71. 71.
    S. Sahmani, M.M. Aghdam, T. Rabczuk, Compos. Struct. 198, 51 (2018)CrossRefGoogle Scholar
  72. 72.
    K. Behrouz, M. Janghorban, A. Tounsi, Thin-Walled Struct. 129, 251 (2018)CrossRefGoogle Scholar
  73. 73.
    A. Farajpour, M.H. Ghayesh, H. Farokhi, Int. J. Mech. Sci. 150, 510 (2019)CrossRefGoogle Scholar
  74. 74.
    D.G. Zhang, Compos. Struct. 100, 121 (2013)CrossRefGoogle Scholar
  75. 75.
    H.S. Shen, Z.X. Wang, Int. J. Mech. Sci. 81, 195 (2014)CrossRefGoogle Scholar
  76. 76.
    M.A. Eltaher, A.E. Alshorbagy, F.F. Mahmoud, Compos. Struct. 99, 193 (2013)CrossRefGoogle Scholar
  77. 77.
    M. Simşek, J.N. Reddy, Int. J. Eng. Sci. 64, 37 (2013)CrossRefGoogle Scholar
  78. 78.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  79. 79.
    L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)CrossRefGoogle Scholar
  80. 80.
    L. Li, Y. Hu, L. Ling, Physica E 75, 118 (2016)ADSCrossRefGoogle Scholar
  81. 81.
    M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Appl. Math. Comput. 218, 7406 (2012)MathSciNetGoogle Scholar
  82. 82.
    J.N. Reddy, C.D. Chin, J. Therm. Stress 21, 593 (1998)CrossRefGoogle Scholar
  83. 83.
    L.J. Sudak, J. Appl. Phys. 94, 7281 (2003)ADSCrossRefGoogle Scholar
  84. 84.
    Y.Q. Zhang, G.R. Liu, X.Y. Xie, Phys. Rev. B 71, 195404 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    Q. Wang, J. Appl. Phys. 98, 124301 (2005)ADSCrossRefGoogle Scholar
  86. 86.
    H.M. Ma, X.L. Gao, J.N. Reddy, J. Mech. Phys. Solid 56, 3379 (2008)ADSCrossRefGoogle Scholar
  87. 87.
    A.W. Mcfarland, J.S. Colton, J. Micromech. Microeng. 15, 1060 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaChina
  2. 2.College of Mechanical and Vehicle EngineeringHunan UniversityChangshaChina
  3. 3.School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations