Advertisement

Study of the effects of source type and magnetic field on the spatial distribution of positron annihilation events in PET/MRI applications

  • Weiling Zheng
  • Xingzhong CaoEmail author
  • Chong Li
  • Yuxiao Li
  • Baoyi Wang
  • Zhenjie Han
  • Fuyan Liu
  • Zhiming Zhang
  • Long Wei
Regular Article
  • 14 Downloads

Abstract.

In this paper, we investigate the spatial distribution of positron annihilation events in PET//MRI systems. A spherical source ranging from 0mm to 10mm in radius was placed in water to represent the tumor region. The magnetic field strength was adjusted from 0T to 30T, and three positron nuclides, 18F , 11C , 68Ga , were used. The positron annihilation distribution was compared with the nuclide distribution (to represent pathological tumor), and the differences in these distribution with and without the magnetic field were evaluated. The compression effect of magnetic field on positron distribution was also investigated. For 11C and 68Ga sources with radioactive source size (rs) of less than 4 mm and 6 mm, respectively, it was found that the critical radius (d of the sphere, which contains 90% annihilated positrons, was significantly larger than its original radioactive source size rs. When the magnetic field was increased to 15T, it was found that the greatest compression occurred with a 2 mm 68Ga source (which also exhibited the greatest contraction in volume V1 although this was larger than the source volume V . Our proposed model of the volume source indicates that the positron distribution deviates greatly from the nuclide distribution for high-energy positron emitted in small source.

References

  1. 1.
    C. Hugenschmidt, Surf. Sci. Rep. 71, 547 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    K. Sato et al., Radiat. Phys. Chem. 78, 1085 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    R.W. Siegel, Annu. Rev. Mater. Sci. 10, 393 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    B. Bergersen, E. Pajanne, Appl. Phys. 4, 25 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    X. Ning et al., Nucl. Instrum. Methods Phys. Res. B 397, 75 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    M. Yamawaki et al., Mater. Sci. Forum 733, 310 (2013)CrossRefGoogle Scholar
  8. 8.
    A.J. Reader, Phys. Med. 24, 49 (2008)CrossRefGoogle Scholar
  9. 9.
    L.M. Fraile et al., Nucl. Instrum. Methods Phys. Res. A 814, 110 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    T.J. Fraum et al., Acad. Radiol. 23, 220 (2016)CrossRefGoogle Scholar
  11. 11.
    J.L. Carreras-Delgado et al., Rev. Esp. Med. Nucl. Imagen Mol. 35, 313 (2016)Google Scholar
  12. 12.
    J. Baxa et al., Eur. J. Radiol. 94, A35 (2017)CrossRefGoogle Scholar
  13. 13.
    E. Ferdova et al., Eur. J. Radiol. 94, A52 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Soret et al., J. Nucl. Med. 48, 932 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    O. Bertolli et al., Phys. Med. 32, 323 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Li et al., Eur. Phys. J. Plus 132, 484 (2017)CrossRefGoogle Scholar
  17. 17.
    J.C. Cheng et al., IEEE Trans. Nucl. Sci. 62, 101 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    T.R. Miller, P.W. Grigsby, Int. J. Radiat. Oncol. 53, 353 (2002)CrossRefGoogle Scholar
  19. 19.
    R. Kraus et al., IEEE Trans. Nucl. Sci. 59, 1900 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Cheng, in Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging (IEEE, 2014)  https://doi.org/10.1109/NSSMIC.2014.7431012
  21. 21.
    D. Burdette, in 2007 IEEE Nuclear Science Symposium Conference Record, Vol. 5 (IEEE, 2007) pp. 3383--3389,  https://doi.org/10.1109/NSSMIC.2007.4436857
  22. 22.
    G. Soultanidis et al., J. Phys.: Conf. Ser. 317, 012021 (2011)Google Scholar
  23. 23.
    A. Hattori et al., Ann. Thorac. Surg. 102, 407 (2016)CrossRefGoogle Scholar
  24. 24.
    A.H. Wolfson et al., Gynecol. Oncol. 141, 255 (2016)CrossRefGoogle Scholar
  25. 25.
    J.C. Walsh et al., Hum. Pathol. 56, 123 (2016)CrossRefGoogle Scholar
  26. 26.
    F. Garibaldi et al., Eur. Phys. J. Plus 132, 396 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Goertzen et al., EJNMMI Phys. 2, A54 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Jena et al., Eur. J. Radiol. 86, 261 (2017)CrossRefGoogle Scholar
  29. 29.
    F. Nishikido et al., Nucl. Instrum. Methods Phys. Res. A 863, 55 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    A.A. Attarwala et al., Z. Med. Phys. 27, 132 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Pagani et al., Eur. J. Nucl. Med. Mol. Imag. 24, 1301 (1997)CrossRefGoogle Scholar
  33. 33.
    H. Napieczynska et al., NeuroImage 158, 112 (2017)CrossRefGoogle Scholar
  34. 34.
    E.L. Cole et al., Bioorg. Med. Chem. 25, 5407 (2017)CrossRefGoogle Scholar
  35. 35.
    X. Yang et al., Biomaterials 32, 4151 (2011)CrossRefGoogle Scholar
  36. 36.
    G. Nagy et al., Eur. J. Pharm. Sci. 106, 336 (2017)CrossRefGoogle Scholar
  37. 37.
    A.S. Johnson, presented at the International Conference on Computing in High-Energy Physics, Chicago, Illinois, United States (1998)Google Scholar
  38. 38.
    R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    D.L. Alexoff et al., Nucl. Med. Biol. 38, 191 (2011)CrossRefGoogle Scholar
  40. 40.
  41. 41.
    C. Le Loirec, C. Champion, Nucl. Instrum. Methods Phys. Res. A 582, 644 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    C. Le Loirec, C. Champion, Nucl. Instrum. Methods Phys. Res. A 582, 654 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    W.W. Moses, Nucl. Instrum. Methods Phys. Res. A 648, S236 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    R. Montironi et al., Eur. Urol. Suppl. 16, 223 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weiling Zheng
    • 1
    • 2
  • Xingzhong Cao
    • 1
    • 3
    Email author
  • Chong Li
    • 1
    • 3
  • Yuxiao Li
    • 2
  • Baoyi Wang
    • 1
    • 3
  • Zhenjie Han
    • 1
    • 2
  • Fuyan Liu
    • 1
    • 3
  • Zhiming Zhang
    • 1
    • 3
  • Long Wei
    • 1
    • 3
  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physics and EngineeringZhengzhou UniversityZhengzhouChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations