Advertisement

Simulation of natural convection of Fe3O4-water ferrofluid in a circular porous cavity in the presence of a magnetic field

  • Zhixiong Li
  • Ahmad Shafee
  • M. Ramzan
  • H. B. RokniEmail author
  • Qasem M. Al-Mdallal
Regular Article
  • 27 Downloads

Abstract.

In the current paper, natural convection of ferrofluid through a permeable medium has been simulated by using a new method (CVFEM). To predict nanofluid characteristics, a single-phase model has been utilized. The roles of the Darcy number, the Hartmann number, the concentration of ferrofluid, and buoyancy forces are displayed in the results. Outputs display that temperature detracts with the augmentation of buoyancy forces and permeability. Augmenting Lorenz forces makes temperature to enhance. A stronger magnetic field can decrease the ferrofluid velocity.

References

  1. 1.
    M. Sheikholeslami, Arman Ghasemi, Zhixiong Li, Ahmad Shafee, S. Saleem, Int. J. Heat Mass Transfer 126, 1252 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Sheikholeslami, M. Jafaryar, Zhixiong Li, Int. J. Heat Mass Transfer 124, 980 (2018)CrossRefGoogle Scholar
  3. 3.
    Mohsen Sheikholeslami, Houman B. Rokni, Int. J. Heat Mass Transfer 114, 517 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Sheikholeslami, Milad Darzi, Zhixiong Li, Int. J. Heat Mass Transfer 125, 1087 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Saleem, S. Nadeem, Rizwan Ul Haq, Eur. Phys. J. Plus 129, 213 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Sheikholeslami, Houman B. Rokni, Int. J. Heat Mass Transfer 115, 1203 (2017)CrossRefGoogle Scholar
  7. 7.
    C.S.K. Raju, S. Saleem, S.U. Mamatha, Iqtadar Hussain, Int. J. Therm. Sci. 132, 309 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Sheikholeslami, J. Mol. Liq. 263, 303 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Sheikholeslami, J. Mol. Liq. 265, 347 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Sheikholeslami, S.A. Shehzad, Zhixiong Li, Int. J. Heat Mass Transfer 125, 375 (2018)CrossRefGoogle Scholar
  11. 11.
    Feroz Ahmed Soomro, Rizwan-ul-Haq, Z.H. Khan, Qiang Zhang, Eur. Phys. J. Plus 132, 412 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Sheikholeslami, S.A. Shehzad, Zhixiong Li, Ahmad Shafee, Int. J. Heat Mass Transfer 127, 614 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Sheikholeslami, Zhixiong Li, Ahmad Shafee, Int. J. Heat Mass Transfer 127, 665 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Sheikholeslami, S.A. Shehzad, F.M. Abbasi, Zhixiong Li, Comput. Methods Appl. Mech. Eng. 338, 491 (2018)CrossRefGoogle Scholar
  15. 15.
    Mohsen Sheikholeslami, J. Taiwan Inst. Chem. Eng. 86, 25 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Sheikholeslami, J. Mol. Liq. 259, 424 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Sheikholeslami, Rizwan-ul Haq, Ahmad Shafee, Zhixiong Li, Int. J. Heat Mass Transfer (2019)  https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.020
  18. 18.
    Rashid Mehmood, S. Nadeem, S. Saleem, Noreen Sher Akbar, J. Taiwan Inst. Chem. Eng. 74, 49 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Nadeem, R. Mehmood, N.S. Akbar, Eur. Phys. J. Plus 129, 182 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Sheikholeslami, J. Mol. Liq. 263, 472 (2018)CrossRefGoogle Scholar
  21. 21.
    N. Muhammad, S. Nadeem, Eur. Phys. J. Plus 132, 377 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Ramzan, M. Farooq, A. Alsaedi, T. Hayat, Eur. Phys. J. Plus 128, 49 (2013)CrossRefGoogle Scholar
  23. 23.
    N.S. Akbar, Z.H. Khan, S. Nadeem, Eur. Phys. J. Plus 129, 123 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Sheikholeslami, J. Mol. Liq. 249, 1212 (2018)CrossRefGoogle Scholar
  25. 25.
    Mohsen Sheikholeslami, J. Mol. Liq. 249, 921 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Sheikholeslami, S.A. Shehzad, Int. J. Heat Mass Transfer 122, 1264 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Sheikholeslami, Neural Comput. Appl. 30, 1055 (2018)CrossRefGoogle Scholar
  28. 28.
    Mohsen Sheikholeslami, M.K. Sadoughi, Int. J. Heat Mass Transfer 116, 909 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Sheikholeslami, J. Mol. Liq. 266, 495 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Sheikholeslami, Comput. Methods Appl. Mech. Eng. 344, 319 (2019)CrossRefGoogle Scholar
  31. 31.
    M. Sheikholeslami, Comput. Methods Appl. Mech. Eng. 344, 306 (2019)CrossRefGoogle Scholar
  32. 32.
    Mohsen Sheikholeslami, Application of Control Volume based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer (Elsevier, 2018)Google Scholar
  33. 33.
    K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhixiong Li
    • 1
    • 2
  • Ahmad Shafee
    • 3
    • 4
  • M. Ramzan
    • 5
    • 6
  • H. B. Rokni
    • 7
    Email author
  • Qasem M. Al-Mdallal
    • 8
  1. 1.School of EngineeringOcean University of ChinaQingdaoChina
  2. 2.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  3. 3.FASTUniversity Tun Hussein Onn MalaysiaParit Raja, Batu PahatMalaysia
  4. 4.Public Authority of Applied Education & Training, College of Technological Studies, Applied Science DepartmentShuwaikhKuwait
  5. 5.Department of Computer ScienceBahria UniversityIslamabadPakistan
  6. 6.Department of Mechanical EngineeringSejong UniversitySeoulKorea
  7. 7.Department of Mechanical and Materials EngineeringTennessee Technological UniversityCookevilleUSA
  8. 8.Department of Mathematical SciencesUnited Arab Emirates UniversityAl-AinUnited Arab Emirates

Personalised recommendations