Advertisement

Thermal radiation effect on the flow field and heat transfer of Co3O4-diamond/EG hybrid nanofluid using experimental data: A numerical study

  • Ali Akbar Abbasian Arani
  • Farhad Monfaredi
  • Alireza AghaeiEmail author
  • Masoud Afrand
  • Ali J. Chamkha
  • Hesamoddin Emami
Regular Article
  • 16 Downloads

Abstract.

In this study, the impact of thermal radiation on fluid flow and heat transfer within a square enclosure filled with ethylene glycol- Co3O4-diamond hybrid nanofluid on the basis of experimental data is investigated. The governing equations are being solved by employing the finite volume method and the SIMPLER algorithm. In investigating this problem, the Rayleigh number is taken from \( Ra=10^{3}\) to \( Ra=10^{5}\) and the volume fraction of nanoparticles in the range from 0.0 to 0.075 percent and the values from 0 to 2 are considered for the radiation parameter. It is observed from the results that in all the considered volume fractions, the average Nusselt number is increased by increasing the value of the radiation parameter. In all of the considered values for Ra and the volume fractions, the most relevant enhancement in the average Nusselt number corresponding to the enhancement of the radiation parameter is 200.25 percent which occurs in \( Ra=10^{5}\) while the volume fraction is 0.075. In all volume fractions investigated, the maximum value of the stream function is increased by increasing the value of the radiation parameter. For all Rayleigh numbers in each of the investigated values of the radiation parameter, the maximum value of the stream function decreases by increasing the volume fraction of nanoparticles. The results of this study reveal that the effect of the thermal radiation in high Rayleigh numbers is not considerable.

References

  1. 1.
    K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)CrossRefGoogle Scholar
  2. 2.
    C.J. Ho, M.W. Chen, Z.W. Li, Int. J. Heat Mass Transfer 51, 4506 (2008)CrossRefGoogle Scholar
  3. 3.
    H. Oztop, E. Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008)CrossRefGoogle Scholar
  4. 4.
    E.B. Öğüt, Int. J. Thermal Sci. 48, 2063 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Jahanshahi, S.F. Hosseinizadeh, M. Alipanah, A. Dehghani, G.R. Vakilinejad, Int. Commun. Heat Mass Transfer 37, 687 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Saleh, R. Roslan, I. Hashim, Int. J. Thermal Sci. 54, 194 (2011)Google Scholar
  7. 7.
    S.M. Aminossadati, B. Ghasemi, Int. Commun. Heat Mass Transfer 38, 672 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Mahmoodi, S.S. Hashemi, Int. J. Therm. Sci. 55, 76 (2012)CrossRefGoogle Scholar
  9. 9.
    P. Valipour, R. Moradi, F. Shaker Aski, J. Mol. Liq. 237, 242 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Hassan, C. Fetecaub, A. Majeed, A. Zeeshan, J. Magn. & Magn. Mater. 465, 531 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Sheikholeslami, A. Zeeshan, A. Majeed, J. Mol. Liq. 268, 354 (2018)CrossRefGoogle Scholar
  12. 12.
    N. Shehzad, A. Zeeshan, R. Ellahi, Commun. Theor. Phys. 69, 655 (2018)CrossRefGoogle Scholar
  13. 13.
    Farooq Hussain, Rahmat Ellahi, Ahmad Zeeshan, Appl. Sci. 8, 275 (2018)CrossRefGoogle Scholar
  14. 14.
    A. Zeeshan, N. Shehzad, R. Ellahi, Results Phys. 8, 502 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Sheikholeslami, A. Zeeshan, Int. J. Numer. Methods Heat Fluid Flow 28, 641 (2017)CrossRefGoogle Scholar
  16. 16.
    A.S. Dogonchi, D.D. Ganji, J. Taiwan Inst. Chem. Eng. 80, 52 (2017)CrossRefGoogle Scholar
  17. 17.
    L.S. Sundar, J. Hortiguela, K. Singh, C. Sousa, Int. Commun. Heat Mass Transfer 76, 245 (2016)CrossRefGoogle Scholar
  18. 18.
    G.A. Sheikhzadeh, H. Khorasanizadeh, S.P. Ghaffari, Trans. Phenom. Nano Micro Scales 1, 75 (2013)Google Scholar
  19. 19.
    M. Sheikholeslami, T. Hayat, A. Alsaedi, Int. J. Heat Mass Transfer 96, 513 (2016)CrossRefGoogle Scholar
  20. 20.
    L. Syam Sundar, G.O. Irurueta, E. Venkata Ramana, Manoj K. Singh, A.C.M. Sousa, Case Studies Therm. Eng. 7, 66 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Afrand, Int. J. Therm. Sci. 118, 12 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Afrand, S. Farahat, A.H. Nezhad, G. Ali Sheikhzadeh, F. Sarhaddi, Int. J. Appl. Electromagn. Mech. 46, 809 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Heat Transfer Res. 45, 749 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, S. Wongwises, Int. Commun. Heat Mass Transfer 60, 13 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Afrand, S. Rostami, M. Akbari, S. Wongwises, M.H. Esfe, A. Karimipour, Int. J. Heat Mass Transfer 90, 418 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Afrand, D. Toghraie, A. Karimipour, S. Wongwises, J. Magn. & Magn. Mater. 430, 22 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Mahmoodi, M.H. Esfe, M. Akbari, A. Karimipour, M. Afrand, Int. J. Appl. Electromagn. Mech. 47, 21 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Teimouri, M. Afrand, N. Sina, A. Karimipour, A.H.M. Isfahani, Int. J. Appl. Electromagn. Mech. 49, 453 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of KashanKashanIran
  2. 2.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran
  3. 3.Department of Mechanical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran
  4. 4.Mechanical Engineering Department, Prince Sultan Endowment for Energy and EnvironmentPrince Mohammad Bin Fahd UniversityAl-KhobarSaudi Arabia
  5. 5.RAK Research and Innovation CenterAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates

Personalised recommendations