Optical properties of the solar gravitational lens in the presence of the solar corona

  • Slava G. TuryshevEmail author
  • Viktor T. Toth
Regular Article
Part of the following topical collections:
  1. Focus Point on Tests of General Relativity and Alternative Gravity Theories


We investigate the optical properties of the solar gravitational lens (SGL) in the presence of the solar corona. For this, we consider the combined influence of the static spherically symmetric gravitational field of the Sun —modeled within the first post-Newtonian approximation of the general theory of relativity— and of the solar corona —modeled as a generic, static, spherically symmetric free electron plasma. We study the propagation of monochromatic electromagnetic (EM) waves through the solar system and develop a Mie theory that accounts for the refractive properties of the gravitational field of the Sun and that of the free electron plasma in the extended solar system. We establish a compact, closed-form solution to the boundary value problem and demonstrate that the presence of the solar plasma affects all characteristics of an incident unpolarized light. The affected properties include the direction of the EM wave propagation, its amplitude and its phase, leading to a reduction of the light amplification of the SGL and to a broadening of the corresponding point spread function. The wavelength-dependent plasma effect is critically important at radio frequencies, where it drastically reduces both the amplification factor of the SGL and also its angular resolution. However, for optical and shorter wavelengths, the plasma’s contribution to the EM wave leaves the plasma-free optical properties of the SGL practically unaffected. We discuss the applicability of the SGL for direct high-resolution multipixel imaging and spatially resolved spectroscopy of exoplanets.


  1. 1.
    V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasma (Pergamon Press, Oxford, 1964)Google Scholar
  2. 2.
    L.D. Landau, E.M. Lifshitz, Physical Kinetics (Nauka, Moscow, 1979) (in Russian)Google Scholar
  3. 3.
    C.W. Allen, Mon. Not. R. Astron. Soc. 107, 426 (1947)ADSCrossRefGoogle Scholar
  4. 4.
    D.O. Muhleman, P.B. Esposito, J.D. Anderson, Astrophys. J. 211, 943 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    G.L. Tyler, J.P. Brenkle, T.A. Komarek, A.I. Zygielbaum, J. Geophys. Res. 82, 4335 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    D.O. Muhleman, J.D. Anderson, Astrophys. J. 247, 1093 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    G. Giampieri, in General relativity and gravitational physics, in Proceedings of the 11th Italian Conference, Trieste, Italy, September 26-30, 1994 (1994) pp. 181–200Google Scholar
  8. 8.
    B. Bertotti, G. Giampieri, Sol. Phys. 178, 85 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    A.K. Verma, A. Fienga, J. Laskar, K. Issautier, H. Manche, M. Gastineau, Astron. Astrophys. 550, A124 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J.L. Synge, Relativity: The General Theory (North-Holland Publishing Company, Amsterdam, 1960)Google Scholar
  11. 11.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 7th edition (Nauka, Moscow, 1988) (in Russian)Google Scholar
  12. 12.
    A.W. Clegg, A.L. Fey, T.J.W. Lazio, Astrophys. J. 496, 253 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    S. Deguchi, W.D. Watson, Astrophys. J. 315, 440 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    V. Perlick, Ray Optics, Fermat’s Principle, and Applications to General Relativity (Springer-Verlag, Berlin, Heidelberg, 2000)Google Scholar
  15. 15.
    V.R. Eshleman, Science 205, 1133 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    S.G. Turyshev, Phys. Rev. D 95, 084041 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S.G. Turyshev, B.G. Andersson, Mon. Not. R. Astron. Soc. 341, 577 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S.G. Turyshev, V.T. Toth, arXiv:1805.00398 [physics.optics] (2018)Google Scholar
  19. 19.
    S.G. Turyshev, V.T. Toth, Phys. Rev. D 96, 024008 (2017)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S.G. Turyshev, V.T. Toth, Phys. Rev. D 99, 024044 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    S.G. Turyshev, V.T. Toth, Phys. Rev. D 98, 104015 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    S.G. Turyshev, V.T. Toth, Phys. Rev. A 97, 033810 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    V.A. Fock, The Theory of Space, Time and Gravitation (Fizmatgiz, Moscow, 1959) (in Russian) (English translation (Pergamon, Oxford, 1959))Google Scholar
  24. 24.
    S.G. Turyshev, V.T. Toth, Int. J. Mod. Phys. D 24, 1550039 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edition (Cambridge University Press, 1999)Google Scholar
  26. 26.
    S.K. Sharma, D.J. Sommerford, Light Scattering by Optically Soft Particles: Theory and Applications (Springer-Verlag, Berlin, Heidelberg, New York, 2006)Google Scholar
  27. 27.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, revised edition (Dover Publications, 1965)Google Scholar
  28. 28.
    L.I. Schiff, Quantum mechanics (McGraw-Hill, 1968)Google Scholar
  29. 29.
    L.D. Landau, E.M. Lifshitz, Quantum mechanics. Non-Relativistic Theory, 4th edition (Nauka, Moscow, 1989) (in Russian)Google Scholar
  30. 30.
    A. Messiah, Quantum Mechanics, Vol. 1 (John Wiley & Sons, 1968)Google Scholar
  31. 31.
    P.G. Burke, R-Matrix Theory of Atomic Collisions. Application to Atomic, Molecular and Optical Processes (Springer-Verlag, Berlin, Heidelberg, 2011)Google Scholar
  32. 32.
    M. Kerker, The scattering of light, and other electromagnetic radiation (Academic Press, 1969)Google Scholar
  33. 33.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)Google Scholar
  34. 34.
    W.T. Grandy jr., Scattering of Waves from Large Spheres (Cambridge University Press, Cambridge, UK, 2005)Google Scholar
  35. 35.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill Science, 1953)Google Scholar
  36. 36.
    B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    I.W. Roxburgh, Astron. Astrophys. 377, 688 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    R.S. Park, W.M. Folkner, A.S. Konopliv, J.G. Williams, D.E. Smith, M.T. Zuber, Astron. J. 153, 121 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.OttawaOntarioCanada

Personalised recommendations