Advertisement

Bound-state solutions of the Dirac equation for the Kratzer potential with pseudoscalar-Coulomb term

  • Altuğ ArdaEmail author
  • Ramazan Sever
Regular Article
  • 30 Downloads

Abstract.

We present exact analytical solutions of the Dirac equation in (1 + 1) dimensions for the generalized Kratzer potential by taking the pseudoscalar interaction term as an attractive Coulomb potential. We study the problem for a particular (spin) symmetry of the Dirac Hamiltonian. After a qualitative analyse, we study the results for some special cases, such as the Dirac-Coulomb problem in the presence of pseudoscalar interaction, and the “pure” Coulomb problem by discussing some points about pseudospin and spin symmetries in one dimension. We also plot some figures representing the dependence of the energy on the quantum number, and potential parameters.

References

  1. 1.
    A. Bermudez, M.A. Martin-Delgado, E. Solano, Phys. Rev. Lett. 99, 123602 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    A. Bermudez, M.A. Martin-Delgado, E. Solano, Phys. Rev. A 76, 041801 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    L. Lamata, M.A. Martin-Delgado, E. Solano, Phys. Rev. Lett. 97, 250502 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A. Bermudez, M.A. Martin-Delgado, A. Luis, Phys. Rev. A 77, 063815 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    A.S. de Castro, Ann. Phys. (N.Y.) 311, 170 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    A.S. de Castro, Ann. Phys. (N.Y.) 320, 56 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    L.B. Castro, A.S. de Castro, P. Alberto, Ann. Phys. (N.Y.) 356, 83 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    L.P. de Oliveiria, L.B. Castro, Ann. Phys. (N.Y.) 364, 99 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    L.B. Castro, A.S. de Castro, Ann. Phys. (N.Y.) 338, 278 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A.S. de Castro, Phys. Lett. A 305, 100 (2002)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Hamzavi, A.A. Rajabi, Ann. Phys. (N.Y.) 334, 316320 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Arda, Adv. High Energy Phys. 2017, 6340409 (2017)CrossRefGoogle Scholar
  13. 13.
    J.N. Ginocchio, Phys. Rep. 414, 165 (2005)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Liang, J. Meng, S.G. Zhou, Phys. Rep. 570, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    I.L. Cooper, Int. J. Quantum Chem. 49, 24 (1994)CrossRefGoogle Scholar
  16. 16.
    A.S. de Castro, Phys. Lett. A 318, 40 (2003)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    F. Bloore, P.A. Horvaty, J. Math. Phys. 33, 1869 (1992)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Meng, K. Sugawara-Tanabe, S. Yamanji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    P. Strange, Relativistic Quantum Mechanics with Applications in Condensed Matter and Atomic Physics (Cambridge University Press, 1998)Google Scholar
  20. 20.
    A.D. Alhaidari, Found. Phys. 40, 1088 (2010)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A.D. Alhaidari, Phys. Lett. B 699, 309 (2011)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    L.B. Castro, A.S. de Castro, M. Hott, Int. J. Mod. Phys. E 16, 3002 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    S. Haouat, L. Chetouani, J. Phys. A 40, 10541 (2007)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Y. Chargui, Few-Body Syst. 57, 306 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    J.A.C. Gallas, Chem. Phys. Lett. 96, 479 (1983)ADSCrossRefGoogle Scholar
  26. 26.
    M. Abramowitz, I.A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1965)Google Scholar
  27. 27.
    A.S. de Castro, Phys. Lett. A 328, 289 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics EducationHacettepe UniversityAnkaraTurkey
  2. 2.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations