Effect of varying viscosity on a two-layer model of the blood flow through porous blood vessels

  • Ashish TiwariEmail author
  • Satyendra Singh Chauhan
Regular Article


The present work concerns the effect of radially varying viscosity on blood flow through blood vessels with porous walls. Blood is assumed as a two-fluid model consisting of a core region of suspension of all red cells constituted by the Herschel-Bulkley fluid and a peripheral layer of plasma free from the cells modeled as a Newtonian fluid. No slip condition has been used on the wall and the pressure gradient has been taken as constant. The wall of the blood vessel is composed of a thin porous (Brinkman) layer representing the glycocalyx layer. On the fluid interface the stress jump boundary condition as suggested by Ochoa-Tapia and Whitaker has been used. Analytical expressions for velocity profile, wall shear stress, rate of flow and resistance to flow have been obtained for different regions and the effects of plasma layer thickness, varying viscosity, yield stress, permeability and viscosity ratio parameter on the hemodynamical quantities are discussed and depicted graphically. A comparative analysis for a relative change in flow resistance between our model and the previously studied single and two-fluid models without porous walls has been done. The effects of various parameters on hematocrit and Fahraeus effect have also been analyzed and results of earlier works have been established as special limiting cases of the present study. A novel observation is that a decreasing viscosity ratio parameter (\(\lambda_{1}\)) leads to decay in average concentration of RBCs leading to decay in hematocrit (Ht). It is concluded that a thick porous layer with high porosity at wall due to either a glycocalyx layer or the deposition of fatty plaques of cholesterol may lead to significant decay in hematocrit Ht and may lead to anemia.


  1. 1.
    J.R. Womersley, J. Physiol. 127, 553 (1955)CrossRefGoogle Scholar
  2. 2.
    R.K. Dash, G. Jayaraman, K.N. Mehta, J. Biomech. 29, 917 (1996)CrossRefGoogle Scholar
  3. 3.
    D. Tripathi, A. Yadav, O.A. Bég, Eur. Phys. J. Plus 132, 173 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Prakash, K. Ramesh, D. Tripathi, R. Kumar, Microvasc. Res. 118, 162 (2018)CrossRefGoogle Scholar
  5. 5.
    D.S. Sankar, K. Hemalatha, Appl. Math. Model. 31, 1847 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Aroesty, J.F. Gross, Microvasc. Res. 4, 1 (1972)CrossRefGoogle Scholar
  7. 7.
    J. Aroesty, J.F. Gross, Biorheology 9, 33 (1972)CrossRefGoogle Scholar
  8. 8.
    D. Tripathi, A. Yadav, O.A. Beg, R. Kumar, Microvasc. Res. 117, 28 (2018)CrossRefGoogle Scholar
  9. 9.
    G.W. Scott Blair, D.C. Spanner, An Introduction to Biorheology (Elsevier Scientific Publishing Company, Amsterdam, 1974)Google Scholar
  10. 10.
    D.S. Sankar, K. Hemalatha, Int. J. Non-Linear Mech. 41, 979 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    D.S. Sankar, K. Hemalatha, Appl. Math. Model. 31, 1497 (2007)CrossRefGoogle Scholar
  12. 12.
    D.S. Sankar, U. Lee, Commun. Nonlinear Sci. Numer. Simul. 14, 2971 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    R. Ponalagusamy, R. Tamil Selvi, A.K. Banerjee, J. Franklin Inst. 349, 1681 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Bugliarello, J. Sevilla, Biorheology 7, 85 (1970)CrossRefGoogle Scholar
  15. 15.
    J.B. Shukla, R.S. Parihar, S.P. Gupta, Bull. Math. Biol. 42, 797 (1980)CrossRefGoogle Scholar
  16. 16.
    V.P. Srivastava, M. Saxena, J. Biomech. 27, 921 (1994)CrossRefGoogle Scholar
  17. 17.
    D.S. Sankar, U. Lee, J. Mech. Sci. Technol. 21, 678 (2007)CrossRefGoogle Scholar
  18. 18.
    D.S. Sankar, U. Lee, Commun. Nonlinear Sci. Numer. Simul. 15, 2086 (2010)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Shaw, P.V.S.N. Murthy, Microvasc. Res. 80, 209 (2010)CrossRefGoogle Scholar
  20. 20.
    R. Ponalagusamy, R. Tamil Selvi, J. Franklin Inst. 348, 2308 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D.S. Sankar, U. Lee, Int. J. Non-Linear Mech. 43, 622 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D.S. Sankar, U. Lee, J. Mech. Sci. Technol. 22, 1008 (2008)CrossRefGoogle Scholar
  23. 23.
    D.S. Sankar, Int. J. Non-Linear Mech. 44, 337 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    M.M. Lih, Transport Phenomena in Medicine and Biology, 1st edition (John Wiley, New York, 1975)Google Scholar
  25. 25.
    J.C. Misra, S.K. Ghosh, Int. J. Eng. Sci. 38, 2045 (2000)CrossRefGoogle Scholar
  26. 26.
    R. Bali, U. Awasthi, Appl. Math. Comput. 188, 1635 (2007)MathSciNetGoogle Scholar
  27. 27.
    R. Ponalagusamy, R. Tamil Selvi, Meccanica 48, 2427 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    G.C. Shit, M. Roy, A. Sinha, Appl. Bion. Biomech. 11, 185 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Tiwari, S.S. Chauhan, Cardiovasc. Eng. Technol. (2018)
  30. 30.
    H. Darcy, Les fontaines publiques de la ville de Dijon (Dalmont, Paris, 1856)Google Scholar
  31. 31.
    H.C. Brinkman, Appl. Sci. Res. A 1, 27 (1947)CrossRefGoogle Scholar
  32. 32.
    H.C. Brinkman, Appl. Sci. Res. A 1, 81 (1947)CrossRefGoogle Scholar
  33. 33.
    H. Vink, B.R. Duling, Circul. Res. 71, 581 (1996)CrossRefGoogle Scholar
  34. 34.
    H.H. Lipowsky, S. Usami, S. Chien, Microvasc. Res. 19, 297 (1980)CrossRefGoogle Scholar
  35. 35.
    A.R. Pries, T.W. Secomb, P. Gaehtgens, J.F. Gross, Circul. Res. 67, 826 (1990)CrossRefGoogle Scholar
  36. 36.
    A.R. Pries, T.W. Secomb, T. Gessner, M.B. Sperandio, J.F. Gross, P. Gaehtgens, Circul. Res. 75, 904 (1994)CrossRefGoogle Scholar
  37. 37.
    J.A. Ochoa-Tapia, S. Whitaker, Int. J. Heat Mass Transfer 38, 2635 (1995)CrossRefGoogle Scholar
  38. 38.
    J.A. Ochoa-Tapia, S. Whitaker, Int. J. Heat Mass Transfer 38, 2647 (1995)CrossRefGoogle Scholar
  39. 39.
    R.K. Dash, K.N. Mehta, G. Jayaraman, Int. J. Eng. Sci. 34, 1145 (1996)CrossRefGoogle Scholar
  40. 40.
    G.P. Raja Sekhar, T. Amaranath, Z. Angew. Math. Phys. 51, 481 (2000)MathSciNetCrossRefGoogle Scholar
  41. 41.
    A. Bhattacharya, G.P. Raja Sekhar, Z. Angew. Math. Phys. 56, 475 (2005)MathSciNetCrossRefGoogle Scholar
  42. 42.
    A.C. Srivastava, N. Srivastava, Z. Angew. Math. Phys. 56, 821 (2005)MathSciNetCrossRefGoogle Scholar
  43. 43.
    N.C. Sacheti, P. Chandran, B.S. Bhatt, R.P. Chhabra, Adv. Stud. Theor. Phys. 2, 243 (2008)MathSciNetGoogle Scholar
  44. 44.
    S. Deo, A.N. Filippov, A. Tiwari, S.I. Vasin, V. Starov, Adv. Colloid Interface Sci. 164, 21 (2011)CrossRefGoogle Scholar
  45. 45.
    C. Desjardins, B.R. Dulling, Am. Physiol. Soc. 252, H494 (1987)Google Scholar
  46. 46.
    C. Desjardins, B.R. Dulling, Am. Physiol. Soc. 258, H647 (1990)Google Scholar
  47. 47.
    T.W. Secomb, R. Hsu, A.R. Pries, Am. Physiol. Soc. 274, H1016 (1998)Google Scholar
  48. 48.
    A.A. Hill, B. Straughan, J. Fluid Mech. 603, 137 (2008)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    A. Tiwari, S. Deo, J. Porous Media 16, 335 (2013)CrossRefGoogle Scholar
  50. 50.
    R. Ellahi, S.U. Rahman, S. Nadeem, N.S. Akbar, Appl. Nanosci. 4, 919 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    N.S. Akbar, S.U. Rahman, R. Ellahi, S. Nadeem, Eur. Phys. J. Plus 129, 256 (2014)CrossRefGoogle Scholar
  52. 52.
    S. Shaw, P.V.S.N. Murthy, P. Sibanda, Microvasc. Res. 85, 77 (2013)CrossRefGoogle Scholar
  53. 53.
    C. Boodoo, B. Bhatt, D. Comissiong, Rheol. Acta 52, 579 (2013)CrossRefGoogle Scholar
  54. 54.
    B.D. Sharma, P.K. Yadav, Transp. Porous Media 120, 239 (2017)MathSciNetCrossRefGoogle Scholar
  55. 55.
    D. Tripathi, A. Borode, R. Jhorar, O.A. Beg, A.K. Tiwari, Microvasc. Res. 114, 65 (2017)CrossRefGoogle Scholar
  56. 56.
    N.K. Ranjit, G.C. Shit, D. Tripathi, Microvasc. Res. 117, 74 (2018)CrossRefGoogle Scholar
  57. 57.
    D. Tripathi, R. Jhorar, A. Borode, O.A. Beg, Eur. J. Mech. B/Fluids 72, 391 (2018)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    B. Straughan, Stability and Wave Motion in Porous Media, Vol. 165, 165th ed. (Springer, New York, 2008)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsBirla Institute of Technology & Science PilaniRajasthanIndia

Personalised recommendations