Advertisement

A homotopy technique for a fractional order multi-dimensional telegraph equation via the Laplace transform

  • Amit Prakash
  • P. Veeresha
  • D. G. Prakasha
  • Manish Goyal
Regular Article
  • 11 Downloads

Abstract.

An effective analytical technique, called q-homotopy analysis transform method (q-HATM) is demonstrated in order to analyse a fractional model of telegraph equations. Test examples are illustrated to inspect the efficiency of the proposed technique. Numerical solutions are obtained in the form of series. Also, its convergence condition, error estimate and numerical simulation results are discussed. The q-HATM handles and controls a series solution that speedily converges to exact result in a small admissible domain efficiently.

References

  1. 1.
    J.H. He, Int. J. Theor. Phys. 53, 3698 (2014)CrossRefGoogle Scholar
  2. 2.
    F.J. Liu, H.Y. Liu, Z.B. Li, J.H. He, Therm. Sci. 21, 1867 (2017)CrossRefGoogle Scholar
  3. 3.
    J.H. He, Results Phys. 10, 272 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)Google Scholar
  5. 5.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)Google Scholar
  6. 6.
    A.C. Metaxas, R.J. Meredith, Industrial Microwave Heating (Peter Peregrinus, London, UK, 1993)Google Scholar
  7. 7.
    V.H. Weston, S. He, Inverse Probl. 9, 789 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    J. Banasiak, J.R. Mika, J. Appl. Math. Stoch. Anal. 11, 9 (1998)CrossRefGoogle Scholar
  9. 9.
    P.M. Jordan, A. Puri, J. Appl. Phys. 85, 1273 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    O. Heaviside, Electromagnetic Theory, Vol. 2 (Chelsea Publishing Company, New York, 1899)Google Scholar
  11. 11.
    E. Orsingher, Z. Xuelei, Chin. Ann. Math. 24, 45 (2003)CrossRefGoogle Scholar
  12. 12.
    S. Momani, Appl. Math. Comput. 170, 1126 (2005)MathSciNetGoogle Scholar
  13. 13.
    R.K. Mohanty, Int. J. Comput. Math. 86, 2061 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Yildirim, Int. J. Comput. Math. 89, 2998 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Sevimlican, Math. Probl. Eng. 2010, 290631 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Dehghan, S.A. Yousefi, A. Lotfi, Int. J. Numer. Methods Bio. Eng. 27, 219 (2011)CrossRefGoogle Scholar
  17. 17.
    R. Jiwari, S. Pandit, R.A. Mittal, Appl. Math. Comput. 218, 7279 (2012)MathSciNetGoogle Scholar
  18. 18.
    Y. Khan, J. Diblik, N. Faraz, Z. Smarda, Adv. Differ. Equ. 2012, 204 (2012)CrossRefGoogle Scholar
  19. 19.
    V.K. Srivastava, M.K. Awasthi, M. Tamsir, AIP Adv. 3, 032142 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    F.A. Alawad, E.A. Yousif, A.I. Arbab, Int. J. Differ. Equ. 2013, 256593 (2013)Google Scholar
  21. 21.
    D. Kumar, J. Singh, S. Kumar, Walailak J. Sci. Technol. 11, 711 (2014)Google Scholar
  22. 22.
    S. Kumar, Appl. Math. Model. 38, 3154 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    V.K. Srivastava, M.K. Awasthi, S. Kumar, Egypt. J. Basic Appl. Sci. 1, 60 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Prakash, Nonlinear Eng. 5, 123 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    R.R. Dhunde, G.L. Waghmare, Int. J. Math. Math. Sci. 2016, 1414595 (2016)CrossRefGoogle Scholar
  26. 26.
    N. Mollahasani, M.M. Mohseni, K. Afrooz, Appl. Math. Model. 40, 2804 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R.K. Pandey, H.K. Mishra, New Astron. 57, 82 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A. Prakash, M. Goyal, S. Gupta, Nonlinear Eng. (2018)  https://doi.org/10.1515/nleng-2018-0001
  29. 29.
    S.J. Liao, Appl. Math. Comput. 147, 499 (2004)MathSciNetGoogle Scholar
  30. 30.
    A. Prakash, H. Kaur, Chaos, Solitons Fractals 105, 99 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    H.M. Srivastava, D. Kumar, J. Singh, Appl. Math. Model. 45, 192 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Kumar, J. Singh, D. Baleanu, Nonlinear Dyn. 91, 307 (2018)CrossRefGoogle Scholar
  33. 33.
    J. Singh, D. Kumar, R. Swroop, Alex. Eng. J. 55, 1753 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amit Prakash
    • 1
  • P. Veeresha
    • 2
  • D. G. Prakasha
    • 2
  • Manish Goyal
    • 3
  1. 1.Department of Mathematics, National Institute of TechnologyKurukshetraIndia
  2. 2.Department of MathematicsKarnataka UniversityDharwadIndia
  3. 3.Department of Mathematics, IAHGLA UniversityMathuraIndia

Personalised recommendations