Structural and dielectric properties of TiO2 thin films grown at different sputtering powers

  • Unal AkgulEmail author
Regular Article


TiO2 thin films have been grown by the rf magnetron sputtering technique at different sputtering powers (90, 110, 130 and 150W). The particle size and shape have changed depending on the sputtering power. The XRD results have revealed that the polycrystalline films have a single or mixed phase. The variation in the crystal phase has affected the value of the dielectric constant. The rutile TiO2 thin film has exhibited a higher dielectric constant. The dielectric constant has decreased with increasing frequency.


  1. 1.
    S. Vyas, R. Tiwary, K. Shubham, P. Chakrabarti, Superlattices Microstruct. 80, 215 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    J. Lin, B. Wang, W.D. Sproul, Y. Ou, I. Dahan, J. Phys. D: Appl. Phys. 46, 084008 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    H. Jung, C. Park, J. Lee, Y.S. Park, Mater. Res. Bull. 58, 44 (2014)CrossRefGoogle Scholar
  4. 4.
    S.K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R.R. Bhatia, P.K. Mishra, V. Manjuladevi, R.K. Gupta, J. Akhtar, Appl. Surf. Sci. 264, 737 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    K.F. Azizi, M.-M. Bagheri-Mohagheghi, Thin Solid Films 621, 98 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mazur, Opt. Mater. 69, 96 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    G. Wan, S. Wang, L. Li, G. Mu, X. Yin, X. Zhang, Y. Tang, L. Yi, J. Alloys Compd. 701, 549 (2017)CrossRefGoogle Scholar
  8. 8.
    P.M. Martin, Handbook of Deposition Technologies for Films and Coatings (William Andrew Publications, Burlington, 2010) p. 427Google Scholar
  9. 9.
    B. Agnarsson, F. Magnus, T.K. Tryggvason, A.S. Ingason, K. Leosson, S. Olafsson, J.T. Gudmundsson, Thin Solid Films 545, 445 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Gyanan, S. Mondal, A. Kumar, Superlattices Microstruct. 100, 876 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    A.F. Khan, M. Mehmood, S.K. Durrani, M.L. Ali, N.A. Rahim, Mater. Sci. Semicond. Process 29, 161 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Jia, H. Yamamoto, T. Okajima, Y. Shigesato, Nanoscale Res. Lett. 11, 324 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    D. Guo, A. Ito, T. Goto, R. Tu, C. Wang, Q. Shen, L. Zhang, J. Adv. Ceram. 2, 162 (2013)CrossRefGoogle Scholar
  14. 14.
    L.B. Freund, S. Suresh, Thin Film Materials (Cambridge University Press, Cambridge, 2003) p. 10Google Scholar
  15. 15.
    S. Dangtip, N. Sripongphan, N. Boonyopakorn, C. Thanachayanont, Ceram. Int. 35, 1281 (2009)CrossRefGoogle Scholar
  16. 16.
    P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Appl. Surf. Sci. 257, 10869 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M. Ratova, R. Klaysri, P. Praserthdam, P.J. Kelly, Vacuum 149, 214 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    S. Nezar, N. Saoula, S. Sali, M. Faiz, M. Mekki, N.A. Laoufi, N. Tabet, Appl. Surf. Sci. 395, 172 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    I. Bunget, M. Popescu, Physics of Solid Dielectrics (Elsevier, New York, 1984) pp. 244, 247Google Scholar
  20. 20.
    B. Karunagaran, S.J. Chung, E.-K. Suh, D. Mangalaraj, Physica B 369, 129 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    V. Bessergenev, Mater. Res. Bull. 44, 1722 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Jawaid, M.M. Khan, Polymer-based Nanocomposites for Energy and Environmental Applications (Woodhead Publishing, 2018) p. 158Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceFirat UniversityElazigTurkey

Personalised recommendations