Advertisement

Unruh-DeWitt detector in the presence of multiple scalar fields: A toy model

  • Chandramouli Chowdhury
  • Ashmita Das
  • Bibhas Ranjan MajhiEmail author
Regular Article

Abstract.

Applications of Unruh-Fulling (UF) effect are well studied in the literature via the interaction of the Unruh-DeWitt (UD) detector and single scalar field. In this work, we investigate a toy model, where the detector is interacting simultaneously with the multiple scalar fields. Our study reveals that the transition rate of the system significantly depends on the acceleration of the detector and the number of scalar fields (n). For \(n\gg 1\), there exists a critical acceleration, beyond which the transition rate becomes drastically higher than the accelerations below the critical point. The appearance of such critical point never occurs in case of the interaction of the UD detector and single scalar field.

References

  1. 1.
    S.A. Fulling, Phys. Rev. D 7, 2850 (1973)CrossRefGoogle Scholar
  2. 2.
    W.G. Unruh, Phys. Rev. D 14, 870 (1976)CrossRefGoogle Scholar
  3. 3.
    B.S. DeWitt, Phys. Rep. 19, 295 (1975)CrossRefGoogle Scholar
  4. 4.
    W.G. Unruh, Phys. Rev. D 15, 365 (1977)CrossRefGoogle Scholar
  5. 5.
    S.W. Hawking, Nature 248, 30 (1974)CrossRefGoogle Scholar
  6. 6.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) 46CrossRefGoogle Scholar
  7. 7.
    G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)MathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Hajicek, Phys. Rev. D 15, 2757 (1977)CrossRefGoogle Scholar
  9. 9.
    D. Singleton, S. Wilburn, Phys. Rev. Lett. 107, 081102 (2011) arXiv:1102.5564 [gr-qc]CrossRefGoogle Scholar
  10. 10.
    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Phys. Rev. Lett. 108, 049001 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Singleton, S. Wilburn, Phys. Rev. Lett. 108, 049002 (2012)CrossRefGoogle Scholar
  12. 12.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)Google Scholar
  13. 13.
    S.A. Fulling, S.N.M. Ruijsenaars, Phys. Rep. 152, 135 (1987)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Takagi, Prog. Theor. Phys. Suppl. 88, 1 (1986)CrossRefGoogle Scholar
  15. 15.
    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008)CrossRefGoogle Scholar
  16. 16.
    T. Padmanabhan, Class. Quantum Grav. 2, 117 (1985)CrossRefGoogle Scholar
  17. 17.
    D. Oriti, Nuovo Cimento B 115, 1005 (2000)MathSciNetGoogle Scholar
  18. 18.
    N. Obadia, M. Milgrom, Phys. Rev. D 75, 065006 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    H. Zhang, H. Noh, Z.H. Zhu, H. Yu, Nucl. Phys. B 824, 19 (2010)CrossRefGoogle Scholar
  20. 20.
    C. Nassif, A.C. Amaro de Faria Jr., Can. J. Phys. 94, 209 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Sriramkumar, Fundam. Theor. Phys. 187, 451 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    E. Martin-Martinez, N.C. Menicucci, Class. Quantum Grav. 31, 214001 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Adhikari, K. Bhattacharya, C. Chowdhury, B.R. Majhi, Phys. Rev. D 97, 045003 (2018) arXiv:1707.01333 [gr-qc]MathSciNetCrossRefGoogle Scholar
  24. 24.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998)CrossRefGoogle Scholar
  25. 25.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    G. Dvali, Fortsch. Phys. 58, 528 (2010) arXiv:0706.2050 [hep-th]CrossRefGoogle Scholar
  27. 27.
    G. Dvali, M. Redi, Phys. Rev. D 80, 055001 (2009) arXiv:0905.1709 [hep-ph]CrossRefGoogle Scholar
  28. 28.
    G. Dvali, I. Sawicki, A. Vikman, JCAP 08, 009 (2009) arXiv:0903.0660 [hep-th]CrossRefGoogle Scholar
  29. 29.
    N. Alkofer, G. D'Odorico, F. Saueressig, F. Versteegen, Phys. Rev. D 94, 104055 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Carlip, AIP Conf. Proc. 1196, 72 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Carlip, AIP Conf. Proc. 1483, 63 (2012)CrossRefGoogle Scholar
  32. 32.
    D.W. Chiou, arXiv:1605.06656 [gr-qc]Google Scholar
  33. 33.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and ProductsGoogle Scholar
  34. 34.
    P.R. Halmos, Measure Theory (Springer Verlag, 1974)Google Scholar
  35. 35.
    J.S. Bell, J.M. Leinaas, Nucl. Phys. B 212, 131 (1983)CrossRefGoogle Scholar
  36. 36.
    E.T. Akhmedov, D. Singleton, Int. J. Mod. Phys. A 22, 4797 (2007) hep-ph/0610391CrossRefGoogle Scholar
  37. 37.
    D. Hummer, E. Martin-Martinez, A. Kempf, Phys. Rev. D 93, 024019 (2016) arXiv:1506.02046 [quant-ph]MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Louko, V. Toussaint, Phys. Rev. D 94, 064027 (2016) arXiv:1608.01002 [gr-qc]MathSciNetCrossRefGoogle Scholar
  39. 39.
    K. Bradler, Nucl. Phys. B 926, 381 (2018) arXiv:1703.02153 [hep-th]MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chandramouli Chowdhury
    • 1
    • 2
  • Ashmita Das
    • 1
  • Bibhas Ranjan Majhi
    • 1
    Email author
  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiAssamIndia
  2. 2.International Centre for Theoretical SciencesNorth KarnatakaIndia

Personalised recommendations