Advertisement

Projectile fragmentation of relativistic nuclei in peripheral collisions

  • Swarnapratim BhattacharyyaEmail author
  • Maria Haiduc
  • Alina Tania Neagu
  • Elena Firu
Regular Article
  • 20 Downloads

Abstract.

A study of multiplicity distribution of singly charged, doubly charged, multi-charged projectile fragments and shower particles has been carried out for the peripheral events of 16O -emulsion interactions at an incident momentum of \( 4.5 A {{\rm GeV}}/c\) , 22Ne -emulsion interactions at an incident momentum of \( 4.1 A {{\rm GeV}}/c\) and 28Si -emulsion interactions at an incident momentum of \( 4.5 A {{\rm GeV}}/c\) . Events having no target fragments have been designated as peripheral events. Our study reveals that the average multiplicity of shower particles ( \( \langle N_s\rangle\) in peripheral events can be expressed as a function of the projectile mass \( A_{\rm P}\) according to the relation \( \langle N_s\rangle = (1.23\pm 0.09({{\rm stat.}})\pm 0.12({{\rm sys.}})){A_{{\rm P}}}^{(0.24\pm 0.07({{\rm stat.}})\pm 0.12({{\rm sys.}}))}\) . On the other hand, in peripheral events the average multiplicity of multi-charged fragments ( \( \langle N_F\rangle\) varies with the mass number of the projectile beam according to the relation \( \langle N_F\rangle = (0.065\pm 0.005({{\rm stat.}})\pm 0.06({{\rm sys.}})){A_{{\rm P}}}^{(0.76\pm 0.07({{\rm stat.}})\pm 0.06({{\rm sys.}}))}\) . The dispersion of multiplicity distribution for singly charged and doubly charged projectile fragments and also for shower particles increases with the increase in the projectile mass. Dispersion values of the multiplicity distribution for the multi-charged fragments decreases with the increase in the projectile mass. The study of different fragmentation modes during the emission of multi-charged projectile fragments reflects that the production of a single projectile fragment with charge Z < 2is the most probable mode of multi-charge projectile fragments emission. The probability of the production of single projectile fragment with charge Z < 2 increases with the increase in the projectile mass.

References

  1. 1.
    PHENIX Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)CrossRefGoogle Scholar
  2. 2.
    K. Adcox et al., Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    U. Heinz, J. Phys. A 42, 214003 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    STAR Collaboration (P.M. Jacobs, A. Schmah), Nucl. Phys. A 956, 641 (2016)CrossRefGoogle Scholar
  5. 5.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. Lett. 107, 052302 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    ATLAS Collaboration (M. Przybycien), Nucl. Part. Phys. Proc. 273-275, 1539 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Brewer et al., J. High Energy Phys. 02, 015 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    D. Teaney, J. Lauret, E.V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    N. Buyukcizmeci, R. Ogul, A.S. Botvina, Eur. Phys. J. A 25, 57 (2005)CrossRefGoogle Scholar
  10. 10.
    R. Ogul, N. Buyukcizmeci, A.S. Botvina, Nucl. Phys. A 749, 126 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. Bhattacharyya, Int. J. Mod. Phys. E 19, 319 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    KLM Collaboration (M.L. Cherry et al.), Acta. Phys. Pol. B 29, 2155 (1998)Google Scholar
  13. 13.
    M.A. Jilany, Phys. Rev. C 70, 014901 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    W. Er-Qin, Chin. Phys. Lett. 28, 082501 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    EMU01 Collaboration (M.I. Adamovich et al.), Phys. Lett. B 390, 445 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    G. Singh et al., Phys. Rev. C 43, 2417 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    EMU01 Collaboration (M.I. Adamovich et al.), Phys. Lett. B 338, 397 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    S. Fakhraddin, M.A. Rahim, Phys. Scr. 78, 015101 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Stolz et al., Phys. Rev. C 65, 064603 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    F.H. Liu, Chin. J. Phys. 39, 248 (2001)Google Scholar
  21. 21.
    M.A. Jilany, Nucl. Phys. A 705, 477 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    A. Dabrowska, Acta. Phys. Pol. B 33, 1961 (2002)ADSGoogle Scholar
  23. 23.
    M. El-Nadi et al., J. Phys. G 25, 1169 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    M. El-Nadi et al., J. Phys. G 28, 1251 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    A. El-Naghy, M. Mohery, K.H. Gad, Acta. Phys. Hung. 15, 155 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Yuan et al., Int. J. Mod. Phys. E 17, 1319 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    M.A. Rahim, S. Fakhraddin, Nucl. Phys. A 831, 39 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    D.A. Artemenkov, P.I. Zarubin, arXiv:nucl-ex/0604007v2 (2006)Google Scholar
  29. 29.
    S.A. Bass et al., J. Phys. G 25, R1 (1999)CrossRefGoogle Scholar
  30. 30.
    S.A. Bass et al., Nucl. Phys. A 967, 67 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    H. Song, Nucl. Phys. A 904, 114c (2013)ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Nagle et al., New J. Phys. 13, 075004 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S. Bhattacharyya et al., J. Phys. G 40, 025105 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    C.F. Powell, P.H. Fowler, D.H. Perkins, The study of elementary particles by photographic method (Pergamon Press, Oxford, 1959) pp. 450--464 and references thereinGoogle Scholar
  35. 35.
    P. Mali, A. Mukhopadhyay, G. Singh, Phys. Scr. 85, 065202 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    E. Fermi, Nuclear Physics (The University of Chicago Press, 1974) p. 160Google Scholar
  37. 37.
    M. El-Nadi et al., Nuovo Cimento A 108, 935 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    S. Kamel et al., Chin. Phys. C 41, 054001 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    B. Basu et al., Fiz. B 4, 137 (1995)ADSGoogle Scholar
  40. 40.
    A. Kumar et al., Pramana J. Phys. 84, 591 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    J.F. Grosse-Oetringhaus, K. Reygers, J. Phys. G 37, 083001 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    M. El-Nadi et al., J. Phys. G 28, 241 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    EMU01 Collaboration (M.I. Adamovich et al.), J. Phys. G 22, 1469 (1996)ADSGoogle Scholar
  44. 44.
    EMU01 Collaboration (M.I. Adamovich et al.), Phys. Lett. B 227, 285 (1989)CrossRefGoogle Scholar
  45. 45.
    EMU01 Collaboration (M.I. Adamovich et al.), Phys. Lett. B 223, 262 (1989)ADSCrossRefGoogle Scholar
  46. 46.
    A. Beiser, Rev. Mod. Phys. 24, 273 (1952)ADSCrossRefGoogle Scholar
  47. 47.
    E. Dahl-Jensen, The properties of photographic emulsion, in 1st CERN School of Physics, St. Cergue, Switzerland, 8--18 April 1962 (1962) pp. 129--150Google Scholar
  48. 48.
    S. Bhattacharyya et al., Phys. Lett. B 726, 194 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Swarnapratim Bhattacharyya
    • 1
    Email author
  • Maria Haiduc
    • 2
  • Alina Tania Neagu
    • 2
  • Elena Firu
    • 2
  1. 1.Department of PhysicsNew Alipore CollegeKolkataIndia
  2. 2.Institute of Space ScienceBucharestRomania

Personalised recommendations