Advertisement

Cosmological study of autonomous dynamical systems in modified Tele-Parallel gravity

  • M. G. GaniouEmail author
  • P. H. Logbo
  • M. J. S. Houndjo
  • J. Tossa
Review

Abstract.

Cosmological approaches of an autonomous dynamical system studied in the framework of f(T) gravity are investigated in this paper. Our methods applied to flat Friedmann-Robertson-Walker equations in f(T) gravity, consisting in extracting dynamical systems whose time-dependence is contained in a single parameter m depending on the Hubble rate of the Universe and its second derivative order. In our attempt to investigate the autonomous aspect of the dynamical systems reconstructed in both vacuum and non-vacuum f (T) gravities, two constant values of the parameter m have been at the heart of our present analysis. In the so-called quasi-de Sitter inflationary era (\( m\simeq 0\)), the corresponding autonomous dynamical systems provide stable de Sitter attractors and unstable de Sitter fixed points. Especially in vacuum f(T) gravity, the approximate form of the f(T) gravities near the stable and the unstable de Sitter fixed points has been performed. The matter dominated era case \( (m=-\frac{9}{2})\) leads to unstable fixed points confirming matter dominated era or not, and stable attractor fixed point describing dark energy dominated era. Another subtlety around the stable fixed point obtained at the matter dominated case in the non-vacuum f(T) gravity is that when the dark energy dominated era is reached, at the same time, the radiation perfect fluid dominated succumbs.

References

  1. 1.
    A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    A.H. Guth, Phys. Rev. D 23, 347 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    A.D. Linde, Phys. Lett. B 108, 389 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    D.N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007) arXiv:astro-ph/0603449ADSCrossRefGoogle Scholar
  7. 7.
    Supernova Cosmology Project Collaboration (S. Perlmutter et al.), Astrophys. J. 517, 565 (1999) astro-ph/9812133CrossRefGoogle Scholar
  8. 8.
    Supernova Search Team Collaboration (A.G. Riess et al.), Astron. J. 116, 1009 (1998) astro-ph/9805201CrossRefGoogle Scholar
  9. 9.
    SDSS Collaboration (M. Tegmark et al.), Phys. Rev. D 69, 103501 (2004) astro-ph/0310723CrossRefGoogle Scholar
  10. 10.
    SDSS Collaboration (U. Seljak et al.), Phys. Rev. D 71, 103515 (2005) astro-ph/0407372ADSCrossRefGoogle Scholar
  11. 11.
    SDSS Collaboration (D.J. Eisenstein et al.), Astrophys. J. 633, 560 (2005) astro-ph/0501171CrossRefGoogle Scholar
  12. 12.
    B. Jain, A. Taylor, Phys. Rev. Lett. 91, 141302 (2003) astro-ph/0306046ADSCrossRefGoogle Scholar
  13. 13.
    J.K. Adelman-McCarthy et al., Astrophys. J. Suppl. 175, 297 (2008) arXiv:0707.3413 [astro-ph]ADSCrossRefGoogle Scholar
  14. 14.
    R. Aldrovandi, J.G. Pereira, An Introduction to Teleparallel Gravity, https://doi.org/www.ift.unesp.br/users/jpereira/tele.pdf
  15. 15.
    K. Kleidis, V.K. Oikonomou, Int. Geom. Methods Mod. Phys. 15, 1850137 (2018) arXiv:1803.10748 [gr-qc]MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010) arXiv:1002.4928 [gr-qc]ADSCrossRefGoogle Scholar
  17. 17.
    K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012) arXiv:1205.3421 [gr-qc]ADSCrossRefGoogle Scholar
  18. 18.
    S. Nojiri, S.D. Odintsov, ECONF C 0602061, 06 (2006)Google Scholar
  19. 19.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) arXiv:hep-th/0601213MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    F.G. Alvarenga, M.J.S. Houndjo, A.V. Monwanou, Jean. B. Chabi-Orou, arXiv:1205.4678 [gr-qc]Google Scholar
  22. 22.
    S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005) hep-th/0508049ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Nojiri, S.D. Odintsov, A. Toporensky, P. Tretyakov, arXiv:0912.2488Google Scholar
  24. 24.
    M.J.S. Houndjo, M.E. Rodrigues, D. Momeni, R. Myrzakulov, arXiv:1301.4642 [gr-qc]Google Scholar
  25. 25.
    E. Novikov, Mod. Phys. Lett. A 31, 1650092 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    E. Novikov, Electron. J. Theor. Phys. 13, 79 (2016)Google Scholar
  27. 27.
    E. Novikov, Am. Res. J. Phys. 4, 1 (2018)Google Scholar
  28. 28.
    F. Hehl, P. Von Der Heyde, G. Kerclok, J. Nester, Rev. Mod. Phys. 48, 393 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    J. Amorós, J. de Haro, S.D. Odintsov, Phys. Rev. D 87, 104037 (2013) arXiv:1305.2344 [gr-qc]ADSCrossRefGoogle Scholar
  30. 30.
    K. Bamba, J. de Haro, S.D. Odintsov, JCAP 1302, 008 (2013) arXiv:1211.2968 [gr-qc]ADSCrossRefGoogle Scholar
  31. 31.
    K. Bamba, S. ’i. Nojiri, S.D. Odintsov, arXiv:1304.6191 [gr-qc]Google Scholar
  32. 32.
    G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009) arXiv:0812.1205 [astro-ph]ADSCrossRefGoogle Scholar
  33. 33.
    E.V. Linder, Phys. Rev. D 81, 127301 (2010) 82ADSCrossRefGoogle Scholar
  34. 34.
    M.E. Rodrigues, I.G. Salako, M.J.S. Houndjo, J. Tossa, Int. J. Mod. Phys. D 23, 1450004 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Yi-Fu Cai, Salvatore Capozziello, Mariafelicia De Laurentis, Emmanuel N. Saridakis, arXiv:1511.07586v2 [gr-qc]Google Scholar
  36. 36.
    Manuel Hohmann, Laur Järv, Ulbossyn Ualikhanova, arXiv:1801.05786v2 [gr-qc]Google Scholar
  37. 37.
    Rafael C. Nunes, arXiv:1802.02281v2 [gr-qc]Google Scholar
  38. 38.
    Rafael C. Nunes, Supriya Pan, Emmanuel N. Saridakis, arXiv:1606.04359v2 [gr-qc]Google Scholar
  39. 39.
    M.M. Ivanov, A.V. Toporensky, Gravit. Cosmol. 18, 43 (2012) arXiv:1106.5179 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    S. Rippl, H. van Elst, R.K. Tavakol, D. Taylor, Gen. Relativ. Gravit. 28, 193 (1996) gr-qc/9511010ADSCrossRefGoogle Scholar
  41. 41.
    M. Khurshudyan, Int. J. Geom. Methods Mod. Phys. 14, 1750041 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    R.D. Boko, M.J.S. Houndjo, J. Tossa, Int. J. Mod. Phys. D 25, 1650098 (2016) arXiv:1605.03404 [gr-qc]ADSCrossRefGoogle Scholar
  43. 43.
    K. Kleidis, V.K. Oikonomou, arXiv:1808.04674 [gr-qc]Google Scholar
  44. 44.
    S.D. Odintsov, V.K. Oikonomou, A.V. Timoshkin, E.N. Saridakis, R. Myrzakulov, arXiv:1810.01276 [gr-qc]Google Scholar
  45. 45.
    S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 98, 024013 (2018) arXiv:1806.07295 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    S.D. Odintsov, V.K. Oikonomou, arXiv:1806.01588.01276 [gr-qc]Google Scholar
  47. 47.
    S.D. Odintsov, V.K. Oikonomou, arXiv:1711.02230v1 [gr-qc]Google Scholar
  48. 48.
    K. Bamba, Davood Momeni, Mudhahir Al Ajmi, arXiv:1711.10475v1Google Scholar
  49. 49.
    Mubasher Jamil, Kuralay Yesmakhanova, Davood Momeni, Ratbay Myrzakulov, Cent. Eur. J. Phys. 10, 1065 (2012)Google Scholar
  50. 50.
    K. Bamba, S. Nojiri, S.D. Odintsov, arXiv:1401.7378v2Google Scholar
  51. 51.
    Manuel Hohmann, Laur Järv, Ulbossyn Ualikhanova, arXiv:1706.02376v2 [gr-qc]Google Scholar
  52. 52.
    K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Di Liu, M.J. Rebouças, arXiv:1207.1503Google Scholar
  54. 54.
    Yi-Fu Cai, Shih-Hung Chen, James B. Dent, Sourish Dutta, Emmanuel N. Saridakis, arXiv:1104.4349v2 [astro-ph.CO]Google Scholar
  55. 55.
    Yi-Fu Cai, Chunlong Li, Emmanuel N. Saridakis, LingQin Xue, arXiv:1801.05827v1 [gr-qc]Google Scholar
  56. 56.
    B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    L.L. So, J.M. Nestr, arXiv:gr-qc/0612062Google Scholar
  58. 58.
    S.C. Ulhoa, E.P. Spaniol, arXiv:1303.144Google Scholar
  59. 59.
    Artur Alho, Sante Carloni, Claes Uggla, arXiv:1607.05715v2 [gr-qc]Google Scholar
  60. 60.
    Stephen Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)Google Scholar
  61. 61.
    S.D. Odintsov, V.K. Oikonomou, Int. J. Mod. Phys. D 26, 1750085 (2017) arXiv:1512.04787 [gr-qc]ADSCrossRefGoogle Scholar
  62. 62.
    L. Nottale, Found. Sci. 15, 101.152 (2008)MathSciNetGoogle Scholar
  63. 63.
    M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Eur. Phys. J. C 72, 1893 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    K. Karami, A. Abdolmaleki, arXiv:1202.2278Google Scholar
  65. 65.
    Mubasher Jamil, Davood Momeni, Ratbay Myrzakulov, arXiv:1309.3269v3 [gr-qc]Google Scholar
  66. 66.
    M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C 72, 1959 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    S. Nesseris, S. Basilakos, E.N. Saridakis, L. Perivolaropoulos, arXiv:1308.6142v3 [astro-ph.CO]Google Scholar
  68. 68.
    W. El Hanafy, G.G.L. Nashed, arXiv:1410.2467v3 [hep-th]Google Scholar
  69. 69.
    S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 92, 124024 (2015) arXiv:1510.04333 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques et de Sciences Physiques (IMSP)Porto-NovoBenin
  2. 2.Faculté des Sciences et Techniques de NatitingouUniversité de ParakouParakouBenin

Personalised recommendations