Entropy generation and unsteady Casson fluid flow squeezing between two parallel plates subject to Cattaneo-Christov heat and mass flux

  • M. AtlasEmail author
  • S. Hussain
  • M. Sagheer
Regular Article


The present article explores the entropy generation on two-dimensional unsteady Casson fluid flow squeezing between two parallel plates. Instead of Fourier’s and Fick’s laws, Cattaneo-Christov heat and mass flux is adopted. Suitable similarity transformation leads the system of partial differential equations to a set of ordinary differential equations. The resulting system of nonlinear boundary value problems is solved through the shooting method. The MATLAB built-in function bvp4c has been used to verify and strengthen the results obtained from the shooting method. Graphs and tables show the impact of developing parameters on velocity, temperature and concentration. Skin friction and Sherwood number have been numerically analyzed via tables. A comparison has been presented with the already published results. The computation results reveal that in the region \(0\leq\eta\leq 0.3\) the velocity profile has decreasing behavior and increases in the region \(0.3\leq\eta\leq 0.7\), as the Casson fluid parameter increases. Increasing values of the Brinkman and Reynolds number yields that the entropy generation profile increases.


  1. 1.
    C. Xu, L. Yuan, Y. Xu, W. Hang, Particuology 8, 360 (2010)CrossRefGoogle Scholar
  2. 2.
    M.J. Stefan, Sitzungsber. Kais. Akad. Wien Math.-Nat. Wiss. Kl. 69, 713 (1874)Google Scholar
  3. 3.
    O. Reynolds, Trans. R. Soc. Lond. 177, 157 (1886)CrossRefGoogle Scholar
  4. 4.
    F.R. Archibald, Trans. ASME J. Lubr. Techol. 78, 29 (1956)Google Scholar
  5. 5.
    H.M. Duwairi, B.T. Shtoush, R.A. Domesh, Heat Mass Transf. 14, 112 (2004)Google Scholar
  6. 6.
    M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, Powder Technol. 239, 259 (2013)CrossRefGoogle Scholar
  7. 7.
    G. Domairry, H. Hatami, J. Mol. Liq. 193, 37 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Atlas, R.U. Haq, M. Mekkaoui, J. Mol. Liq. 223, 289 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Sheikholeslami, D.D. Ganji, M.M. Rashidi, J. Magn. & Magn. Mater. 416, 164 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Sheikholeslami, D.D. Ganji, Int. J. Numer. Methods Fluid 27, 1535 (2017)CrossRefGoogle Scholar
  11. 11.
    A.S. Dogonchi, D.D. Ganji, J. Mol. Liq. 318, 390 (2017)Google Scholar
  12. 12.
    D.A. McDonald, Blood flow in arteries (Williams & Wilkins, 1974)Google Scholar
  13. 13.
    E.W. Merrill, A.M. Benis, E.R. Gilliland, T.K. Sherwood, E.W. Salzman, J. Appl. Physiol. 20, 954 (1965)CrossRefGoogle Scholar
  14. 14.
    S.V.H.N.K. Kumari, M.V. Murthy, M.C.K. Reddy, Y.V.K.R. Kumar, Adv. Appl. Sci. Res. 2, 428 (2011)Google Scholar
  15. 15.
    S. Sreenadh, A.R. Pallavi, B.H. Satyanarayana, Adv. Appl. Sci. Res. 2, 340 (2011)Google Scholar
  16. 16.
    N.S. Shashikumar, M. Archana, B.C. Prasannakumara, B.J. Gireesha, O.D. Makinde, Defect Diffus. Forum 377, 84 (2017)CrossRefGoogle Scholar
  17. 17.
    O.D. Makinde, N. Sandeep, T.M. Ajayi, I.L. Animasaun, Int. J. Nonlinear Sci. Numer. Simul. 19, 93 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Fourier, Théorie analytique de la chaleur, par M. Fourier (chez Firmin Didot, pere et fils, 1822)Google Scholar
  19. 19.
    C. Cattaneo, Atti Semin. Mat. Fis. Univ. Modena 05, 83 (2009)Google Scholar
  20. 20.
    C.I. Christov, Mech. Res. Commun. 36, 481 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Han, L. Zheng, C. Li, X. Zhang, Appl. Math. Lett. 38, 87 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Shah, S. Hussain, M. Sagheer, AIP Adv. 6, 085 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Li, L. Zheng, L. Liu, J. Mol. Liq. 221, 19 (2016)CrossRefGoogle Scholar
  24. 24.
    O.D. Makinde, N. Sandeep, I.L. Animasaun, M.S. Tshehla, Defect Diffus. Forum 374, 67 (2017)CrossRefGoogle Scholar
  25. 25.
    M.H. Matin, I. Pop, Int. Commun. Heat Mass Transfer 46, 134 (2013)CrossRefGoogle Scholar
  26. 26.
    G.V.P.N. Srikanth, B.S. Babu, G. Srinivas, Int. J. Mech. Product. Eng. 2, 2320 (2014)Google Scholar
  27. 27.
    S. Mukhopadhyay, Int. J. Chem. React. Eng. 13, 29 (2015)Google Scholar
  28. 28.
    S. Hussain, Adv. Appl. Math. Mech. 9, 904 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Bejan, J. Appl. Phys. 79, 1191 (1996)CrossRefGoogle Scholar
  30. 30.
    M.H. Abolbashari, N. Freidoonimehr, F. Nazari, M.M. Rashidi, Powder Technol. 267, 256 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Sheikholeslami, D.D. Ganji, Physica A 417, 273 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Hussain, K. Mehmood, M. Sagheer, J. Magn. & Magn. Mater 419, 140 (2016)CrossRefGoogle Scholar
  33. 33.
    M.I. Afridi, M. Qasim, O.D. Makinde, J. Heat Transf. 139, 104 (2017)CrossRefGoogle Scholar
  34. 34.
    B. Mahanthesh, B.J. Gireesha, S.R. Gorla, O.D. Makinde, Neural Comput. Appl. 30, 1557 (2018)CrossRefGoogle Scholar
  35. 35.
    M.H. Abolbashari, N. Freidoonimehr, F. Nazari, M.M. Rashidi, Adv. Powder Technol. 26, 542 (2015)CrossRefGoogle Scholar
  36. 36.
    G.H.R. Kefayati, Int. J. Heat Mass Transfer 94, 582 (2016)CrossRefGoogle Scholar
  37. 37.
    T.Y. Na, Computational Methods in Engineering Boundary Value Problems, Mathematics in Science and Engineering, Vol. 145 (Elsevier, 1980)Google Scholar
  38. 38.
    O. Pourmehran, M.R. Gorji, M.G. Bandpy, D.D. Ganji, Alexandria Eng. J. 54, 17 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsCapital University of Science and TechnologyIslamabadPakistan

Personalised recommendations