Advertisement

Combinations of tunneling and spin-orbit interaction effects on the thermodynamics and entropy of coaxial quantum wires

  • D. Najafi
  • B. VaseghiEmail author
  • G. Rezaei
  • R. Khordad
Regular Article
  • 26 Downloads

Abstract.

Thermodynamical properties of a typical coaxial quantum wire under the simultaneous effects of external electric and magnetic fields with great attention to the spin-orbit interaction and tunneling effects are investigated. To this aim the Schrödinger equation is solved to find the energy eigenvalues and eigenfunctions of the system and the Tsallis formalism is used to find thermodynamical parameters such as entropy, internal energy, and specific heat. Results show the considerable effect of the spin-orbit interaction and external fields on the electronic and thermodynamics of the presented complex system. It is shown that the tunneling phenomenon has considerable and interesting effects on the energies and entropy in comparison with mono-layer quantum wires without tunneling effects.

References

  1. 1.
    M.S. Skolnick, D.J. Mowbray, Physica E 21, 155 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    E. Durgun, R.T. Senger, H. Sevinli, H. Mehrez, S. Ciraci, Phys. Rev. B 74, 235413 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A. Soncini, L.F. Chibotaru, Phys. Rev. B 81, 132403 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A. Dankert, S. Dash, Nat. Commun. 8, 16093 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S.D. Sarma, Spintronics, Am. Sci. 89, 516 (2001)CrossRefGoogle Scholar
  6. 6.
    H. Dery, H. Wu, B. Ciftcioglu, M. Huang, Y. Song, R. Kawakami, J. Shi, I. Krivorotov, I. Zutic, L.J. Sham, IEEE: Trans. Electron Devices 59, 259 (2012)ADSGoogle Scholar
  7. 7.
    B. Jiang, P. Qiu, H. Chen, J. Huang, T. Mao, Y. Wang, Q. Song, D. Ren, X. Shi, L. Chen, Mater. Today Phys. 5, 20 (2018)CrossRefGoogle Scholar
  8. 8.
    Y.G. Semenov, K.W. Kima, Appl. Phys. Lett. 91, 153105 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J.Y. Chen, C.Y. Ho, M.L. Lu, L.J. Chu, K.C. Chen, S.W. Chu, W. Chen, C.Y. Mou, Y.F. Chen, Nano Lett. 6, 3130 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J. Arajo eNobregaa, V. OrsiGordo, H.V.A. Galeti, Y. GalvoGobato, M.J.S.P. Brasil, D. Taylor, M. Orlita, M. Henini, Superlattices Microstruct. 88, 574 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    T. Kampfrath, A. SeiP, G. Klatt, A. Pashkin, S. Mhrlein, T. Dekorsy, M. WolF, M. Fiebig, A. Leitenstorfer, R. Huber, Nat. Photon. 5, 31 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Xu, D.D. Awschalom, J. Nitta, Handbook of Spintronics (Springer, Dordrecht, 2016)Google Scholar
  13. 13.
    A.R. Lima, J.S. Sa Martins, T.J.P. Penna, Physica A 268, 553 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    C. Tsallis, Andre M.C. Souza, Phys. Rev. E 67, 026106 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    G.L. Ferri, S. Martnez, A. Plastino, J. Stat. Mech.: Theory Exp. 2005, P04009 (2005)CrossRefGoogle Scholar
  18. 18.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, New York, 2009)Google Scholar
  19. 19.
    J.M. Angulo, F.J. Esquivel, Entropy 17, 5382 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    R. Clausius, Annal. Phys. (Berlin) 125, 353 (1865)ADSCrossRefGoogle Scholar
  21. 21.
    M. Gell-Mann, C. Tsallis, Nonextensive Entropy: Interdisciplinary Applications (Oxford University Press, New York, 2004)Google Scholar
  22. 22.
    B. Hesselbo, R.B. Stinchcombe, Phys. Rev. Lett. 74, 2151 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    U.H.E. Hansmann, Y. Okamoto, J. Comput. Chem. 18, 920 (1997)CrossRefGoogle Scholar
  24. 24.
    U.H.E. Hansmann, Y. Okamoto, F. Eisenmenger, Chem. Phys. Lett. 259, 321 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    A.P. Lyubartsev, A.A. Martinovski, S.V. Shevkunov, P.N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    G. Baris Bagci, T. Oikonomou, Phys. Rev. E 93, 022112 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    H. Hasegawa, Phys. Rev. E 82, 031138 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    J. Sangtawee, W. Srikom, A. Amthong, Phys. Status Solidi b 255, 1800005 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Yong-Ho Ra, Rangaswamy Navamathavan, Hee-Il Yoo, Cheul-Ro Lee, Nano Lett. 14, 1537 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    B. Mitra, K.P. Ghatak, Phys. Scr. 40, 776 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    G. Rezaei, M.J. Karimi, Opt. Commun. 285, 5467 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S. Aktas, F.K. Boz, S.S. Dalgic, Phys. E 28, 96 (2005)CrossRefGoogle Scholar
  33. 33.
    F.K. Boz, S. Aktas, Superlatt. Microstruct. 37, 281 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    S. Aktas, F.K. Boz, A. Bilekkaya, S.E. Okan, Physica E 41, 1572 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    E.I. Rashba, Al.L. Efros, Phys. Rev. Lett. 91, 126405 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955)ADSCrossRefGoogle Scholar
  38. 38.
    E.P. Nakhmedov, O. Alekperov, Eur. Phys. J. B 85, 298 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. Schliemann, J.C. Egues, D. Loss, Phys. Rev. Lett. 90, 146801 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    S. Nadj-Perge, S.M. Frolov, E.P.A.M. Bakkers, L.P. Kouwenhoven, Nature 468, 1084 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    A. Das et al., Nat. Phys. 8, 887 (2012)CrossRefGoogle Scholar
  42. 42.
    A.Yu. Kitaev, Phys.-Usp. 44, 131 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    P. Gogna, M. Lingalugari, J. Chandy, E. Heller, E.-S. Hasaneen, F. Jain, VLSICS 3, 27 (2012)CrossRefGoogle Scholar
  44. 44.
    J. Wang, W. Wei, X. Yan, J. Zhang, X. Zhang, X. Ren, Opt. Express 25, 9358 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    L. Megalini, B. Bonef, B.C. Cabinian, H. Zhao, A. Taylor, J.S. Speck, J.E. Bowers, J. Klamkin, Appl. Phys. Lett. 111, 032105 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    B. Vaseghi, A. Ghaffari, Physica E 81, 163 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    A. Ghafari, B. Vaseghi, G. Rezaei, S.F. Taghizadeh, M.J. Karimi, Superlattices Microstruct. 101, 397 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    R. Khordad, Continuum Mech. Thermodyn. 28, 947 (2016)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    H.M. Hurst, D.K. Efimkin, V. Galitski, Phys. Rev. B 93, 245111 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Eur. Phys. J. Plus 133, 302 (2018)CrossRefGoogle Scholar
  51. 51.
    M.J. Karimi, G. Rezaei, J. Appl. Phys. 111, 064313 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of SciencesYasouj UniversityYasoujIran

Personalised recommendations