Advertisement

Hubble drift in Palatini \(f(\mathcal{R})\) theories

  • L. Del Vecchio
  • L. FatibeneEmail author
  • S. Capozziello
  • M. Ferraris
  • P. Pinto
  • S. Camera
Regular Article
Part of the following topical collections:
  1. Focus Point on Tests of General Relativity and Alternative Gravity Theories

Abstract.

In a Palatini \(f(\mathcal{R})\) model, we define chronodynamical effects due to the choice of atomic clocks as standard reference clocks and we develop a formalism able to quantitatively separate them from the usual effective dark sources one has in extended theories, namely the ones obtained by recasting field equations for \(\tilde{g}\) in the form of Einstein equations. We apply the formalism to Hubble drift and briefly discuss the issue about the physical frame. In particular, we shall argue that there is not one single physical frame, for example, in the sense one defines measure in one frame while test particles goes along geodesics in the other frame. That is the physical characteristic of extended gravity. As an example, we discuss how the Jordan frame may be well suited to discuss cosmology, though it fails within the solar system.

References

  1. 1.
    F. Melchiorri, B.O. Melchiorri, L. Pietranera, B.O. Melchiorri, Astrophys. J. 250, L1 (1981)CrossRefADSGoogle Scholar
  2. 2.
    E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009) arXiv:0803.0547 [astro-ph]CrossRefADSGoogle Scholar
  3. 3.
    Planck Collaboration, Astron. Astrophys. 594, A13 (2016) arXiv:1502.01589 [astro-ph.CO]CrossRefGoogle Scholar
  4. 4.
    The Fermi-LAT Collaboration, The Fermi-LAT high-latitude Survey: Source Count Distributions and the Origin of the Extragalactic Diffuse Background, arXiv:1003.0895 [astro-ph.CO]Google Scholar
  5. 5.
    The LIGO -Virgo Collaborations, Phys. Rev. Lett. 119, 161101 (2017) arXiv:1710.05832 [gr-qc]CrossRefADSGoogle Scholar
  6. 6.
    F. Zwicky, Helvetica Phys. Acta 6, 110 (1933)ADSGoogle Scholar
  7. 7.
    F. Zwicky, Astrophys. J. 86, 217 (1937)CrossRefADSGoogle Scholar
  8. 8.
    K.C. Freeman, Astrophys. J. 160, 811 (1970)CrossRefADSGoogle Scholar
  9. 9.
    V.C. Rubin, J.W.K. Ford, Astrophys. J. 159, 379 (1970)CrossRefADSGoogle Scholar
  10. 10.
    V. Trimble, Annu. Rev. Astron. Astrophys. 25, 425 (1987)CrossRefADSGoogle Scholar
  11. 11.
    A.G. Riess et al., Astrophys. J. 116, 1009 (1998) arXiv:astro-ph/9805201Google Scholar
  12. 12.
    M. Milgrom, Astrophys. J. 270, 365 (1983)CrossRefADSGoogle Scholar
  13. 13.
    P.D. Mannheim, D. Kazanas, Astrophys. J. 342, 635 (1989)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    M. Campigotto, L. Fatibene, Ann. Phys. 362, 521 (2015) arXiv:1506.06071CrossRefADSGoogle Scholar
  15. 15.
    R. Jackiw, S.-Y. Pi, Fake Conformal Symmetry in Conformal Cosmological Models, arXiv:1407.8545Google Scholar
  16. 16.
    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012) arXiv:1106.2476 [astro-ph.CO]MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    L. Fatibene, S. Garruto, Int. J. Geom. Methods Mod. Phys. 11, 1460018 (2014) arXiv:1403.7036 [gr-qc]MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. Capozziello, M. De Laurentis, Scholarpedia 10, 31422 (2015)CrossRefADSGoogle Scholar
  19. 19.
    L. Fatibene, M. Francaviglia, Extended Theories of Gravitation and the Curvature of the Universe -- Do We Really Need Dark Matter? in Open Questions in Cosmology, edited by Gonzalo J. Olmo (Intech, 2012), ISBN 978-953-51-0880-1Google Scholar
  20. 20.
    G.J. Olmo, Palatini Approach to Modified Gravity: f(R) Theories and Beyond, arXiv:1101.3864 [gr-qc]Google Scholar
  21. 21.
    A. Borowiec, M. Kamionka, A. Kurek, Marek Szydłowski, Cosmic acceleration from modified gravity with Palatini formalism, arXiv:1109.3420 [gr-qc]Google Scholar
  22. 22.
    Salvatore Capozziello, Mariafelicia F. De Laurentis, Lorenzo Fatibene, Marco Ferraris, Simon Garruto, SIGMA 12, 006 (2016) arXiv:1509.08008Google Scholar
  23. 23.
    G. Magnano, L.M. Sokolowski, Phys. Rev. D 50, 5039 (1994) gr-qc/9312008MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    E. Barausse, T.P. Sotiriou, J.C. Miller, A no-go theorem for polytropic spheres in Palatini f(R) gravity, DOI: 10.1088/0264-9381/25/6/062001Google Scholar
  25. 25.
    G.J. Olmo, Re-examination of polytropic spheres in Palatini f(R) gravity, DOI: 10.1103/PhysRevD.78.104026Google Scholar
  26. 26.
    A. Mana, L. Fatibene, M. Ferraris, JCAP 10, 040 (2015) arXiv:1505.06575CrossRefADSGoogle Scholar
  27. 27.
    A. Wojnar, Eur. Phys. J. C 78, 421 (2018) arXiv:1712.01943 [gr-qc]CrossRefADSGoogle Scholar
  28. 28.
    P. Pinto, L. Del Vecchio, L. Fatibene, M. Ferraris, Extended Cosmology in Palatini f(R)-theories, arXiv:1807.00397 [gr-qc]Google Scholar
  29. 29.
    S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003) hep-th/0307288CrossRefADSGoogle Scholar
  30. 30.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) hep-th/0601213MathSciNetCrossRefGoogle Scholar
  31. 31.
    S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011) arXiv:1011.0544MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    V.F. Cardone, S. Camera, A. Diaferio, JCAP 02, 030 (2012) arXiv:1201.3272 [astro-ph.CO]CrossRefADSGoogle Scholar
  33. 33.
    S. Camera, A. Diaferio, V.F. Cardone, JCAP 07, 016 (2011) arXiv:1104.2740 [astro-ph.CO]CrossRefADSGoogle Scholar
  34. 34.
    V.F. Cardone, S. Camera, R. Mainini, A. Romano, A. Diaferio, R. Maoli, R. Scaramella, Mon. Not. R. Astron. Soc. 430, 21 (2013) arXiv:1204.3148 [astro-ph.CO]CrossRefGoogle Scholar
  35. 35.
    M.R. oshan, F. Shojai, Phys. Lett. B 668, 238 (2008) arXiv:0809.1272 [gr-qc]MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    J. Ehlers, F.A.E. Pirani, A. Schild, The Geometry of Free Fall and Light Propagation, in General Relativity edited by L.O. Raifeartaigh (Clarendon, Oxford, 1972)Google Scholar
  37. 37.
    M. Di Mauro, L. Fatibene, M. Ferraris, M. Francaviglia, Int. J. Geom. Methods Mod. Phys. 7, 887 (2010) gr-qc/0911.2841MathSciNetCrossRefGoogle Scholar
  38. 38.
    L. Fatibene, Relativistic Theories, Gravitational Theories and General Relativity, in preparation, draft version 1.0.1, https://sites.google.com/site/lorenzofatibene/my-links/book-version-1-0-1
  39. 39.
    V. Perlick, Gen. Relativ. Gravit. 19, 1059 (1987)MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich, Class. Quantum Grav. 15, 43 (1998)CrossRefADSGoogle Scholar
  41. 41.
    R. Scaramella, Euclid space mission: a cosmological challenge for the next 15 years, in Proceedings IAU Symposium No. 306, 2014, ``Statistical Challenges in 21st Century Cosmology'', edited by A.F. Heavens, J.-L. Starck, A. Krone-Martins, arXiv:1501.04908Google Scholar
  42. 42.
    P.-S. Corasaniti, D. Huterer, A. Melchiorri, Phys. Rev. D 75, 062001 (2007) arXiv:astro-ph/0701433CrossRefADSGoogle Scholar
  43. 43.
    EUCLID Collaboration (R. Laureijs), Euclid Definition Study Report, ESA-SRE (2011) 12 arXiv:1110.3193 [astro-ph.CO]Google Scholar
  44. 44.
    Euclid Theory Working Group (Luca Amendola et al.), Living Rev. Relativ. 16, 6 (2013) arXiv:1206.1225 [astro-ph.CO]CrossRefGoogle Scholar
  45. 45.
    Luca Amendola et al., Living Rev. Relativ. 21, 2 (2018) arXiv:1606.00180 [astro-ph.CO]CrossRefADSGoogle Scholar
  46. 46.
    P. Bull, Fundamental Physics with the Square Kilometer Array, arXiv:1810.02680 [astro-ph.CO]Google Scholar
  47. 47.
    SKA Cosmology SWG Collaboration (Roy Maartens et al.), PoS AASKA 14, 016 (2015) arXiv:1501.04076 [astro-ph.CO]Google Scholar
  48. 48.
    Hans-Rainer Klckner et al., PoS AASKA 14, 027 (2015) arXiv:1501.03822 [astro-ph.CO]Google Scholar
  49. 49.
    L. Fatibene, M. Francaviglia, Int. J. Geom. Methods Mod. Phys. 09, 1260003 (2012) arXiv:1109.4115 [math-ph]CrossRefGoogle Scholar
  50. 50.
    G. Magnano, M. Ferraris, M. Francaviglia, Gen. Relativ. Gravit. 19, 465 (1987)CrossRefADSGoogle Scholar
  51. 51.
    L. Fatibene, M. Francaviglia, Int. J. Geom. Methods Mod. Phys. 11, 1450008 (2014) arXiv:1302.2938 [gr-qc]MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversity of TorinoTorinoItaly
  2. 2.Istituto Nazionale di Fisica Nucleare (INFN)Sezione di TorinoTorinoItaly
  3. 3.Dipartimento di FisicaUniversity of Napoli “Federico II”NapoliItaly
  4. 4.Istituto Nazionale di Fisica Nucleare (INFN)Sezione di NapoliNapoliItaly
  5. 5.Gran Sasso Science Institute (GSSI)L’AquilaItaly
  6. 6.Physics DepartmentLancaster UniversityLancasterUK
  7. 7.Dipartimento di FisicaUniversity of TorinoTorinoItaly
  8. 8.INAFOsservatorio Astrofisico di TorinoPino TorineseItaly

Personalised recommendations