Analysis on propagation characteristics of the shear wave in a triple layered concentric infinite long cylindrical structure: An analytical approach

  • Pulkit Kumar
  • Amares Chattopadhyay
  • Moumita MahantyEmail author
  • Abhishek Kumar Singh
Regular Article


The present work delves into the propagation of a horizontally polarised shear (SH) wave in an infinitely long cylindrical structure comprised of three concentric isotropic layered media. The model has been formulated in cylindrical co-ordinates and an analytical approach is employed to achieve the closed form of the dispersion relation. The application of the Debye Asymptotic Analysis to tackle the complexity arisen due to the involvement of Hankel’s function in the solution treatment is one of the key features of the present article. With the aid of the Debye Asymptotic Analysis, the dispersion equation is shown to be in well agreement with the classical Love wave equation in the absence of the outermost layer medium. The present analysis highlights the influence of the wave number and various radii ratios of the concentric cylindrical layered elastic medium on the phase velocity of the shear wave propagating in the embraced structure. Numerical computations have been carried out to accomplish the graphical demonstration unravelling some important peculiarities associated with the propagation characteristics of the shear wave in the considered cylindrical structure.


  1. 1.
    W.M. Ewing, W.S. Jardetzky, F. Press, Geol. Foereningan i Stock. Foerhandlingar 80, 128 (1958)CrossRefGoogle Scholar
  2. 2.
    J.D. Achenbach, Wave Propagation in Elasticsolida (North Holland Publishing, 1973)Google Scholar
  3. 3.
    A.K. Vashishth, P. Khurana, Geophys. J. Int. 161, 295 (2005)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, H. Takenaka, T. Furumura, Geophys. J. Int. 145, 689 (2001)CrossRefGoogle Scholar
  5. 5.
    D. Kessler, D. Kosloff, Geophys. J. Int. 103, 577 (1990)CrossRefGoogle Scholar
  6. 6.
    K. Watanabe, R.G. Payton, J. Mech. Phys. Solids 50, 2425 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A.N. Abd-Alla, F. Alshaikh, I. Giorgio, A. Della Corte, Math. Mech. Solids 21, 104 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    W. Gao, Z. Cui, K. Wang, J. Sound Vib. 332, 5014 (2013)CrossRefGoogle Scholar
  9. 9.
    R.K. Pattanayak, P. Manogharan, K. Balasubramaniam, P. Rajagopal, J. Acoust. Soc. Am. 137, 3253 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Catheline, N. Benech, J. Acoust. Soc. Am. 137, EL200 (2015)CrossRefGoogle Scholar
  11. 11.
    A.K. Singh, S. Kumar, R. Kumari, Eur. Phys. J. Plus 133, 120 (2018)CrossRefGoogle Scholar
  12. 12.
    P. Kumari, C. Modi, V.K. Sharma, Eur. Phys. J. Plus 131, 263 (2016)CrossRefGoogle Scholar
  13. 13.
    F.W.J. Olver, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 247, 328 (1954)CrossRefGoogle Scholar
  14. 14.
    G.A. Rogerson, Y.B. Fu, Acta Mech. 111, 59 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    G.A. Rogerson, Int. J. Solids Struct. 34, 2785 (1997)CrossRefGoogle Scholar
  16. 16.
    C.J. Chapman, Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 4008 (2012)CrossRefGoogle Scholar
  17. 17.
    C.J. Chapman, Proc. R. Soc. A Math. Phys. Eng. Sci. 469, 20120659 (2013)CrossRefGoogle Scholar
  18. 18.
    B. Delourme, Math. Methods Appl. Sci. 38, 811 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    G.N. Watson, A Treatise on the Theory of Bessel Function (Cambridge University Press, 1922)Google Scholar
  20. 20.
    A.K. Mal, Pure Appl. Geophys. 53, 25 (1962)CrossRefGoogle Scholar
  21. 21.
    A. Chattopadhyay, N.P. Mahata, J. Acoust. Soc. Am. 74, 286 (1983)CrossRefGoogle Scholar
  22. 22.
    A.K. Singh, A. Das, A. Chattopadhyay, S. Dhua, Soil Dyn. Earthq. Eng. 69, 16 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Kumari, S. Anand Sahu, A. Chattopadhyay, A. Kumar Singh, Int. J. Geomech. 16, 04015062 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Mahanty, A. Chattopadhyay, S. Dhua, M. Chatterjee, Appl. Math. Model. 52, 493 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Chattopadhyay, P. Singh, P. Kumar, A.K. Singh, Waves Random Complex Media 28, 643 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Gubbins, Seismology and Plate Tectonics (Cambridge University Press, 1990)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations