Advertisement

Nonlinear dust magnetosonic waves in collisional plasma

  • S. HussainEmail author
  • H. Rizvi
Regular Article
  • 21 Downloads

Abstract.

The excitations and damping of nonlinear dust magnetosonic waves in dissipative plasma are investigated. The dynamics of negatively charged dust particles is considered. The dissipation is taken due to dust neutral collisions. The ions and electrons are inertialess on dust dynamic scale. The temperature of ions and electrons is also taken into account. The linear dispersion charteristics of dust magnetosonic waves are discussed for different values of plasma parameters. For this purpose we have derived Damped Korteweg de Vries (DKdV) equation by applying the reductive perturbation method. For weak dissipation the analytical solution of DKdV is presented. For the numerical solution, we apply a two-level finite difference scheme with the help of the Runge-Kutta method. The effects of variations of different plasma parameters on the damping of nonlinear dust magnetosonic solitary wave structures are discussed.

References

  1. 1.
    V.V. Yaroshenko, F. Verheest, G. Morfill, Astron. Astrophys. 461, 385 (2007)CrossRefGoogle Scholar
  2. 2.
    B.P. Panday, J. Vranjes, Phys. Plasmas 15, 083701 (2008)CrossRefGoogle Scholar
  3. 3.
    P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002)Google Scholar
  4. 4.
    P.K. Shukla, L. Stenflo, Astrophys. Space Sci. 190, 23 (1992)CrossRefGoogle Scholar
  5. 5.
    S.S. Duha, B. Shikia, A.A. Mamun, Pramana J. Phys. 77, 357 (2011)CrossRefGoogle Scholar
  6. 6.
    P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992)CrossRefGoogle Scholar
  7. 7.
    B.P. Pandey, S.V. Vladimirov, A. Samarian, Phys. Plasmas 25, 053705 (2008)CrossRefGoogle Scholar
  8. 8.
    F. Haas, P.K. Shukla, Phys. Plasmas 15, 093702 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Hussain, S. Mahmood, Phys. Plasmas 18, 123701 (2011)CrossRefGoogle Scholar
  10. 10.
    N. Kaur, M. Singh, N.S. Siani, Phys. Plasmas 25, 043704 (2018)CrossRefGoogle Scholar
  11. 11.
    S.V. Vladimirov, M.Y. Yu, Phys. Rev. E 48, 2136 (1993)CrossRefGoogle Scholar
  12. 12.
    S. Ghosh, EPL 99, 36002 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Hussain, H. Hasnain, Phys. Plasmas 24, 032106 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Sultana, I. Kourakis, Phys. Plasmas 22, 102302 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Washimi, T. Tanuiti, Phys. Rev. Lett. 17, 996 (1966)CrossRefGoogle Scholar
  16. 16.
    P.K. Shukla, H.U. Rahman, Phys. Plasmas 3, 1 (1996)Google Scholar
  17. 17.
    A. Barken, R.L. Merlino, N. D’Angelo, Phys. Plasmas 2, 10 (1995)Google Scholar
  18. 18.
    E. Cumberbatch, Phys. Fluids 21, 374 (1978)CrossRefGoogle Scholar
  19. 19.
    S. Sultana, Phys. Lett. A 382, 1368 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    I.S. Elkamash, I. Kourakis, in Proceedings of the 43rd EPS Conference on Plasma Physics - Leuven, Belgium (EPS, 2016) p. 977Google Scholar
  21. 21.
    S. Hussain, Mahnaz Q. Haseeb, H. Hasnain, Phys. Plasmas 24, 102126 (2017)CrossRefGoogle Scholar
  22. 22.
    P.K. Shukla, I. Kourakis, L. Stenflo, Phys. Plasmas 12, 024501 (2005)CrossRefGoogle Scholar
  23. 23.
    A.A. Mamun, P.K. Shukla, R. Bingham, JETP Lett. 77, 541 (2003)CrossRefGoogle Scholar
  24. 24.
    T.A. Ellis, J.S. Neff, Icarus 91, 281 (1991)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretical Physics Division (TPD)PINSTECHIslamabadPakistan

Personalised recommendations