Stability of graphite-like ZnO film with Cu doping: First principle study

  • Haoyu Sang
  • Yongzhi ZengEmail author
  • Lei Sun
Regular Article


The stability of the graphite-like ZnO film has been studied by first principle calculation. By analyzing ZnO films from 5 to 9 layers, the GP (graphite-like) structure turns out to be unstable for the reason that the intrinsic defects produce the additional electrons. By doping Cu into the ZnO thin film, the correlation between band structure, binding energy and integrated state density indicates that the electrons in Cu-3d are strongly coupled with the electrons in O-2p, resulting in Cu 2p electron atoms in adjacent oxygen. The shallow acceptor level is promoted by the Fermi level, which can effectively reduce the concentration of electrons in the film and enhance the intrinsic dipole field, thereby making the ZnO structure ZnO stable.


  1. 1.
    Harihar Behera, Gautam Mukhopadhyay, Phys. Lett. A 376, 3287 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Frederik Claeyssens, Colin L. Freeman, Neil L. Allan, Ye Sun, Michael N.R. Ashfold, John H. Harding, J. Mater. Chem. 15, 139 (2004)CrossRefGoogle Scholar
  3. 3.
    C.L. Freeman, F. Claeyssens, N.L. Allan, J.H. Harding, Phys. Rev. Lett. 96, 066102 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    C. Tusche, H. Meyerheim, J. Kirschner, Phys. Rev. Lett. 99, 026102 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    N. Jedrecy, M. Sauvage-Simkin, R. Pinchaux, Appl. Surf. Sci. 162--163, 69 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    J. Fritsch, O.F. Sankey, K.E. Schmidt, J.B. Page, Phys. Rev. B 57, 15360 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    O. Dulub, L.A. Boatner, U. Diebold, Surf. Sci. 519, 201 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    J.E. Northrup, R.D. Felice, J. Neugbauer, Phys. Rev. B 55, 13878 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 15, 6 (1996)Google Scholar
  11. 11.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Perdew, J.A. Chevary, S.H. Vosko et al., Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    S. Karazhanov, Phys. Status Solidi B 247, 950 (2010)Google Scholar
  17. 17.
    S. Chatman, L. Emberley, K.M. Poduska, ACS Appl. Mater. Interfaces 1, 2348 (2009)CrossRefGoogle Scholar
  18. 18.
    Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 41301 (2005)CrossRefGoogle Scholar
  19. 19.
    Y. Min, C. An, S. Kim, J. Song, C. Hwang, Bull. Korean Chem. Soc. 31, 142 (2010)Google Scholar
  20. 20.
    K.S. Ahn, T. Deutsch, Y. Yan, C.-S. Jiang, C.L. Perkins, J. Turner, M. Al-Jassim, J. Appl. Phys. 102, 023517 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Information EngineeringFuzhou UniversityFuzhouChina
  2. 2.Zhicheng CollegeFuzhou UniversityFuzhouChina

Personalised recommendations