Exact relation between canonical and metric energy-momentum tensors for higher derivative tensor field theories

  • R. V. Ilin
  • S. A. PastonEmail author
Regular Article


We discuss the relation between canonical and metric energy-momentum tensors for field theories with actions that can depend on the higher derivatives of tensor fields in a flat spacetime. In order to obtain it we use a modification of Noether's procedure for curved spacetime. For the considered case the difference between these two tensors turns out to have a more general form than for theories with no more than first-order derivatives. Despite this fact we prove that the difference between corresponding integrals of motion still has the form of an integral over 2-dimensional surface that is infinitely remote in the spacelike directions.


  1. 1.
    E. Noether, Gott. Nachr. 1918, 235 (2018) arXiv:physics/0503066Google Scholar
  2. 2.
    L.D. Faddeev, Sov. Phys. Usp. 25, 130 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cambridge University Press, 1995)Google Scholar
  4. 4.
    F.J. Belinfante, Physica 6, 887 (1939)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    F.J. Belinfante, Physica 7, 449 (1940)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Rosenfeld, Mem. Acad. R. Belg. Sci XVIII, 1536 (1940)Google Scholar
  7. 7.
    M.J. Gotay, J.E. Marsden, Contemp. Math. 132, 367 (1992)CrossRefGoogle Scholar
  8. 8.
    Hans C. Ohanian, The Energy-Momentum Tensor in General Relativity and in Alternative Theories of Gravitation, and the Gravitational vs. Inertial Mass (2010) arXiv:1010.5557Google Scholar
  9. 9.
    N.V. Mitskevich, Physical fields in General Relativity (Fizicheskie polia v obshchei teorii otnositelʼnosti) (Nauka, 1969) in RussianGoogle Scholar
  10. 10.
    A. Trautman, Remarks on the history of the notion of Lie differentiation, in Variations, Geometry and Physics, edited by O. Krupkova, D.J. Saunders (Nova Science Publishers, New York, 2008) pp. 297--302Google Scholar
  11. 11.
    T. Regge, C. Teitelboim, General relativity à la string: a progress report, in Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 1975, edited by R. Ruffini (North Holland, Amsterdam, 1977) pp. 77--88, arXiv:1612.05256Google Scholar
  12. 12.
    S. Deser, F.A.E. Pirani, D.C. Robinson, Phys. Rev. D 14, 3301 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    S.A. Paston, V.A. Franke, Theor. Math. Phys. 153, 1582 (2007) arXiv:0711.0576CrossRefGoogle Scholar
  14. 14.
    S.A. Paston, A.N. Semenova, Int. J. Theor. Phys. 49, 2648 (2010) arXiv:1003.0172CrossRefGoogle Scholar
  15. 15.
    D.A. Grad, R.V. Ilin, S.A. Paston, A.A. Sheykin, Int. J. Mod. Phys. D 27, 1750188 (2018) arXiv:1707.01074ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Paston, Theor. Math. Phys. 169, 1611 (2011) arXiv:1111.1104MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations