Advertisement

A micropolar fluid model for hydrodynamics in the renal tubule

  • M. KahshanEmail author
  • A. M. Siddiqui
  • T. Haroon
Regular Article

Abstract.

The creeping flow of an incompressible micropolar fluid in a small-diameter permeable tube is studied. The fluid absorption at the tube walls is taken as a function of wall permeability and the pressure gradient across the tube wall. Closed-form solutions of the governing equations for the pressure, velocity and micro-rotation fields are obtained. Expressions describing variations in the axial volume flow rate, mean pressure, wall leakage flux, wall shear stress and the fractional re-absorption are derived. Effects of the wall permeability coefficient K , the micropolar parameter m and the coupling number N on flow variables are graphically presented and implications of results are discussed briefly. The obtained solutions are applied to the flow problem in the proximal renal tubule and probable values of the wall permeability parameter and the mean pressure drop in the tubule are obtained. It is found that the mean pressure drop in the proximal tubule is higher for the micropolar fluid than for the Newtonian fluid. It is also found that the volume flow rate of the micropolar fluid decreases exponentially as a function of the axial distance. This is a biologically significant result which is well accepted and is reported in the literature by earlier researchers too. The derived solutions coincide well with the existing solutions for the Newtonian fluid flow in a permeable tube as a special case.

References

  1. 1.
    Robert I. Macey, Bull. Math. Biophys. 25, 303 (1963)CrossRefGoogle Scholar
  2. 2.
    Robert I. Macey, Bull. Math. Biophys. 27, 117 (1965)CrossRefGoogle Scholar
  3. 3.
    A.A. Kozinski, F.P. Schmidt, E.N. Lightfoot, Ind. Eng. Chem. Fundam. 9, 502 (1970)CrossRefGoogle Scholar
  4. 4.
    G. Radhakrishnamacharya, Peeyush Chandra, M.R. Kaimal, Bull. Math. Biol. 43, 151 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    E.A. Marshall, E.A. Trowbridge, Bull. Math. Biol. 36, 457 (1974)CrossRefGoogle Scholar
  6. 6.
    Paul J. Palatt, Henry Sackin, Roger I. Tanner, J. Theor. Biol. 44, 287 (1974)CrossRefGoogle Scholar
  7. 7.
    P. Chaturani, T.R. Ranganatha, Acta Mech. 88, 11 (1991)CrossRefGoogle Scholar
  8. 8.
    A.M. Siddiqui, T. Haroon, M. Kahshan, M.Z. Iqbal, J. Comput. Theor. Nanosci. 12, 4319 (2015)CrossRefGoogle Scholar
  9. 9.
    A.M. Siddiqui, T. Haroon, M. Kahshan, Magnetohydrodynamics 51, 655 (2015)CrossRefGoogle Scholar
  10. 10.
    A.M. Siddiqui, T. Haroon, A. Shahzad, Appl. Math. Mech. 37, 361 (2016)CrossRefGoogle Scholar
  11. 11.
    T. Haroon, A.M. Siddiqui, A. Shahzad, Appl. Math. Sci. 10, 795 (2016)Google Scholar
  12. 12.
    A. Cemal Eringen, Theory of micropolar fluids, Technical report, DTIC Document (1965)Google Scholar
  13. 13.
    S.C. Cowin, Phys. Fluids 11, 1919 (1968)CrossRefGoogle Scholar
  14. 14.
    Vijay Kumar Stokes, Theories of Fluids with Microstructure: An Introduction (Springer Science & Business Media, 2012)Google Scholar
  15. 15.
    P. Chaturani, D. Biswas, Rheol. Acta 23, 435 (1984)CrossRefGoogle Scholar
  16. 16.
    P. Muthu, B.V. Rathish Kumar, Peeyush Chandra, J. Mech. Med. Biol. 8, 561 (2008)CrossRefGoogle Scholar
  17. 17.
    G. Ravi Kiran, G. Radhakrishnamacharya, O. Anwar Bég, J. Mech. Med. Biol. 17, 1750013 (2016)CrossRefGoogle Scholar
  18. 18.
    G.C. Shit, M. Roy, J. Mech. Med. Biol. 11, 643 (2011)CrossRefGoogle Scholar
  19. 19.
    Gerhard Giebisch, Ruth M. Klose, Gerhard Malnic, W. James Sullivan, Erich E. Windhager, J. Gen. Physiol. 47, 1175 (1964)CrossRefGoogle Scholar
  20. 20.
    Carl W. Gottschalk, Harvey Lect. 58, 99 (1962)Google Scholar
  21. 21.
    Carl W. Gottschalk, Folia Med. Neerland. 5, 11 (1962)Google Scholar
  22. 22.
    G. Malnic, Ruth M. Klose, G. Giebisch, Am. J. Physiol. Leg. Content 211, 529 (1966)CrossRefGoogle Scholar
  23. 23.
    Karl J. Ullrich, Bodil Schmidt-Nielsen, Roberta O’Dell, Gundula Pehling, Carl W. Gottschalk, William E. Lassiter, Margaret Mylle, Am. J. Physiol. Leg. Content 204, 527 (1963)CrossRefGoogle Scholar
  24. 24.
    Erich E. Windhager, Micropuncture Techniques and Nephron Function (Appleton-Century-Crofts, 1968)Google Scholar
  25. 25.
    Carl W. Gottschalk, Margaret Mylle, Am. J. Physiol. Leg. Content 185, 430 (1956)CrossRefGoogle Scholar
  26. 26.
    R.B. Kelman, Bull. Math. Biophys. 24, 303 (1962)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsCOMSATS University IslamabadAbbottabadPakistan
  2. 2.Department of MathematicsCOMSATS University IslamabadIslamabadPakistan
  3. 3.Department of MathematicsPennsylvania State UniversityEdgecombUSA

Personalised recommendations