Advertisement

Fate of a thin-shell wormhole powered by Morris-Thorne wormhole

  • S. Danial Forghani
  • S. Habib MazharimousaviEmail author
  • M. Halilsoy
Regular Article

Abstract.

Asymmetric thin-shell wormholes from two traversable Morris-Thorne wormhole spacetimes, with identical shape but different redshift functions, are constructed. Energy density of the thin-shell wormhole derives its power from a Morris-Thorne wormhole which is already exotic. By choice, the weak energy condition for the thin-shell wormhole is satisfied. A linear barotropic equation of state is assumed to hold after the radial perturbations. The fate of our thin-shell wormhole, after the perturbation, is striking: the asymmetric thin-shell wormhole is destined either to collapse to the original Morris-Thorne wormhole or to expand indefinitely along with the radius of the throat. In case it collapses to the original wormhole, the result is an asymmetric Morris-Thorne wormhole. Although this asymmetry does not reflect into the embedding diagram of the wormhole, passing across the throat, the wormhole adventurer feels a different redshift function.

References

  1. 1.
    M. Visser, Phys. Rev. D 39, 3182 (1989)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Poisson, M. Visser, Phys. Rev. D 52, 7318 (1995)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E.F. Eiroa, C. Simeone, Phys. Rev. D 70, 044008 (2004)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    E.F. Eiroa, G.E. Romero, Gen. Rel. Gravit. 36, 4 (2004)CrossRefGoogle Scholar
  5. 5.
    F.S.N. Lobo, P. Crawford, Class. Quantum Grav. 21, 391 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    E.F. Eiroa, C. Simeone, Phys. Rev. D 71, 127501 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    F. Rahaman, M. Kalam, S. Chakraborty, Gen. Rel. Gravit. 38, 1687 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. Thibeault, C. Simeone, E.F. Eiroa, Gen. Rel. Gravit. 38, 1593 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    C. Bejarano, E.F. Eiroa, C. Simeone, Phys. Rev. D 75, 027501 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M.G. Richarte, C. Simeone, Phys. Rev. D 76, 087502 (2007) 77ADSCrossRefGoogle Scholar
  11. 11.
    E.F. Eiroa, Phys. Rev. D 78, 024018 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J.P.S. Lemos, F.S.N. Lobo, Phys. Rev. D 78, 044030 (2008)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    G.A.S. Dias, J.P.S. Lemos, Phys. Rev. D 82, 084023 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Usmani, Z. Hasan, F. Rahaman, Sk.A. Rakib, Saibal Ray, P.K.F. Kuhfittig, Gen. Rel. Gravit. 42, 2901 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. Sharif, M. Azam, J. Cosmol. Astropart. Phys. 04, 023 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M. Sharif, M. Azam, Eur. Phys. J. C 73, 2407 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Halilsoy, A. Ovgun, S.H. Mazharimousavi, Eur. Phys. J. C 74, 2796 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M.R. Mehdizadeh, M. Kord Zangeneh, F.S.N. Lobo, Phys. Rev. D 92, 044022 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    E.F. Eiroa, G.F. Aguirre, Eur. Phys. J. C 76, 132 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    M.Z. Bhatti, Z. Yousaf, Sara Ashraf, Ann. Phys. 383, 439 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    E.R. de Celis, C. Tomasini, C. Simeone, Int. J. Mod. Phys. D 27, 01 (2018)Google Scholar
  22. 22.
    S.D. Forghani, S.H. Mazharimousavi, M. Halilsoy, Eur. Phys. J. C 78, 469 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    S.D. Forghani, S.H. Mazharimousavi, M. Halilsoy, arXiv:1807.05080 (2018)Google Scholar
  24. 24.
    A.G. Agnese, M. La Camera, Phys. Rev. D 51, 2011 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    S. Krasnikov, Phys. Rev. D 62, 084028 (2000)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.P.S. Lemos, F.S.N. Lobo, Phys. Rev. D 69, 104007 (2004)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    K.A. Bronnikov, arXiv:1807.03641 (2018)Google Scholar
  29. 29.
    S.H. Mazharimousavi, M. Halilsoy, Phys. Rev. D 90, 087501 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    C. Lanczos, Phys. Z. 23, 539 (1922)Google Scholar
  31. 31.
    W. Israel, Nuovo Cimento B 44, 1 (1966)ADSCrossRefGoogle Scholar
  32. 32.
    J.P.S. Lemos, F.S.N. Lobo, S.Q. de Oliveira, Phys. Rev. D 68, 064004 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    C. Hoffmann, T. Ioannidou, S. Kahlen, B. Kleihaus, J. Kunz, Phys. Rev. D 97, 124019 (2018)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    S. Bahamonde, D. Benisty, E.I. Guendelman, Linear potentials in galaxy halos by Asymmetric Wormholes, arXiv:1801.08334Google Scholar
  35. 35.
    E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva, AIP Conf. Proc. 1243, 60 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    V. Varela, Phys. Rev. D 92, 044002 (2015)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phys. 21, 1 (1904)Google Scholar
  38. 38.
    E.F. Eiroa, Phys. Rev. D 80, 044033 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesEastern Mediterranean UniversityFamagustaTurkey

Personalised recommendations