Advertisement

A complete DFT description on structural, electronic, elastic, mechanical and thermodynamic properties of some intermetallic AuX2 (X = Al, Ga, In) compounds

  • Sajad Ahmad DarEmail author
  • Vipul Srivastava
  • Surendra Nath Tripathi
  • Umesh Kumar Sakalle
Regular Article

Abstract.

The electronic structure, elastic, mechanical and thermodynamic properties of some cubic intermetallic compounds AuX2(X = Al, Ga, In) have been studied within the density functional theory (DFT) using the full potential linearized augmented plane-wave technique (FP-LAPW). The designed values of structural parameters including lattice constant, bulks modulus and ground-states energies are found in good agreement with the available data. The spin included electronic examination presents the metallic nature for all the three compounds with symmetry in spin-up and spin-down states. The elastic properties have been calculated under ambient conditions and have been used to envisage some vital mechanical factors like bulk modulus (B), Young’s modulus (Y), shear modulus (G), Poisson ratio (\( \nu\)) and anisotropic factor (A). The calculated results reveal that AuX2(X = Al, Ga, In) compounds establish low elastic anisotropy, low hardness and high ductility. Quasi-harmonic Debye approximation has been used to investigate pressure and temperature dependence of bulk modulus (B), heat capacity (Cv), thermal expansion (\( \alpha\), and Debye temperature (\( \theta_{\rm D}\). Furthermore, Cv was found to strictly follow the Debye T3-law and Dulong-Petit limit for all the three compounds.

References

  1. 1.
    Md.Z. Rahaman, Md.L. Ali, Md.A. Rahman, Chin. J. Phys. 56, 231 (2018)CrossRefGoogle Scholar
  2. 2.
    C.-F. Yu, H.-C. Cheng, W.-H. Chen, RSC Adv. 5, 70609 (2015)CrossRefGoogle Scholar
  3. 3.
    G. Chen, P. Zhang, Defence Technol. 9, 131 (2013)CrossRefGoogle Scholar
  4. 4.
    C.-F. Yu, H.-C. Cheng, W.-H. Chen, J. Alloys Compd. 619, 576 (2015)CrossRefGoogle Scholar
  5. 5.
    G.V. Sin’ko, N.A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002)ADSGoogle Scholar
  6. 6.
    B.T. Matthias, T.H. Geballe, S. Geller, E. Corenzwit, Phys. Rev. 9, 1435 (1954)ADSCrossRefGoogle Scholar
  7. 7.
    A.N. Mansour, A. Dmitrienko, A.V. Soldatov, Phys. Rev. B 55, 15531 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    W. Hume-Rothery, J. Ins. Met. 35, 209 (1925)Google Scholar
  9. 9.
    T. An, F. Qin, J. Electron. Packag. 138, 011002 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Terada, K. Ohkubo, S. Miura, J.M. Sanchez, T. Mohri, J. Alloys Compd. 354, 202 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Terada, Platin. Met. Rev. 52, 208 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Liang, D. Fan, P. Jiang, H. Liu, W. Zhao, Intermetallics 87, 27 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Lu, N. Zou, X. Zhao, J. Shen, X. Lu, Y. He, Intermetallics 88, 91 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Rajagopalan, M. Sundareswari, J. Alloys Compd. 379, 8 (2004)CrossRefGoogle Scholar
  15. 15.
    L. Mohammedi, B. Daoudi, A. Boukraa, Comput. Condens. Matter 2, 11 (2015)CrossRefGoogle Scholar
  16. 16.
    S.A. Dar, V. Srivastava, U.K. Sakalle, V. Parrey, Eur. Phys. J. Plus 64, 133 (2018)Google Scholar
  17. 17.
    S.A. Dar, V. Srivastava, U.K. Sakalle, G. Pagare, Comput. Condens. Matter 14, 137 (2018)CrossRefGoogle Scholar
  18. 18.
    E.A. Moore, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 104, 46 (2008)CrossRefGoogle Scholar
  19. 19.
    K.M. Wong, S.M. Alay-E-Abbas, Y. Fang, A. Shaukat, Y. Lei, J. Appl. Phys. 114, 034901 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    O.M. Abid, S. Menouer, A. Yakoubi, H. Khachai, S.B. Omran, G. Murtaza, D. Prakash, R. Khenata, K.D. Verma, Superlattices Microstruct. 93, 171 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    G. Murtaza, S.K. Gupta, T. Seddik, R. Khenata, Z.A. Alahmed, R. Ahmed, H. Khachai, P.K. Jha, S. Bin Omran, J. Alloys Compd. 597, 36 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Haddou1, G. Murtaza, H. Khachai, R. Khenata, S.B. Omran, N. Ullah, D. Varshney, A. Bouhemadou, Int. J. Thermophys. 36, 2940 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Li-Shing Hsu, Y.-K. Wang, Y.-L. Tai, J.-F. Lee, Phys. Rev. B 72, 115115 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Li-Shing Hsua, G.-Y. Guob, J.D. Denlinger, J.W. Allen, J. Phys. Chem. Solids 62, 104 (2001)Google Scholar
  26. 26.
    R.A. Hein, J.E. Cox, J. Willis, H.R. Khan, Ch.J. Raub, J. Less-Common Met. 62, 197 (1978)CrossRefGoogle Scholar
  27. 27.
    S. Hufner, J.H. Wernick, K.W. West, Solid State Commun. 10, 1013 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    V.J. Keast, K. Birt, C.T. Koch, S. Supansomboon, M.B. Cortie, Appl. Phys. Lett. 99, 111908 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Dar, V. Srivastava, U.K. Sakalle, Mater. Res. Express 4, 106104 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Otero-de-la-Roza, D. Abbasi-Perez, V. Luaea, Comput. Phys. Commun. 182, 2232 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Dar, V. Srivastava, U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Z. Wu, R.E. Cohen, Phys. Rev. B 73, 235116 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971)ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    S.A. Dar, V. Srivastava, U.K. Sakalle, J. Supercond. Novel Magn. 30, 3055 (2017)CrossRefGoogle Scholar
  36. 36.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    T. Charpin, A Package for Calculating Elastic Tensors of Cubic Phases Using WIEN (Laboratory of Geometrix, Paris, France, 2001)Google Scholar
  38. 38.
    J.-P. Jan, B. Pearson, Y. Saito, M. Springford, I.M. Templeton, Philos. Mag. 12, 1271 (1965)ADSCrossRefGoogle Scholar
  39. 39.
    L.-S. Hsu, Mod. Phys. Lett. B 8, 1297 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    F. Birch, J. Appl. Phys. 9, 279 (1938)ADSCrossRefGoogle Scholar
  41. 41.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  42. 42.
    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    S.A. Dar, V. Srivastava, U.K. Sakalle, A. Rashid, G. Pagare, Mater. Res. Express 5, 026106 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    S.A. Dar, V. Srivastava, U.K. Sakalle, J. Mol. Model. 24, 52 (2018)CrossRefGoogle Scholar
  45. 45.
    J. Wang, S. Yip, Phys. Rev. Lett. 71, 4182 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952)ADSCrossRefGoogle Scholar
  47. 47.
    W. Voigt, Ann. Phys. 38, 573 (1889)CrossRefGoogle Scholar
  48. 48.
    A. Reuss, Z. Angew, Math. Phys. 9, 49 (1929)Google Scholar
  49. 49.
    T. Vergaard, J.W. Hirtchinson, J. Am. Ceram. Soc. 71, 157 (1988)CrossRefGoogle Scholar
  50. 50.
    S.F. Pugh, Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  51. 51.
    J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Sci. 31, 1 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    D.G. Pertifor, Mater. Sci. Technol. 8, 345 (1992)CrossRefGoogle Scholar
  53. 53.
    A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sajad Ahmad Dar
    • 1
    Email author
  • Vipul Srivastava
    • 2
  • Surendra Nath Tripathi
    • 3
  • Umesh Kumar Sakalle
    • 4
  1. 1.Department of PhysicsGovt. Motilal Vigyan Mahavidyalya CollegeBhopalIndia
  2. 2.Department of PhysicsNRI Institute of Research & TechnologyBhopalIndia
  3. 3.Department of PhysicsBarkatullah University Hosangabad RoadBhopalIndia
  4. 4.Department of PhysicsS. N. P. G. CollegeKhandwaIndia

Personalised recommendations