Advertisement

Determination of the uranium enrichment without calibration standards using a 2 × 2 inch LaBr3(Ce) room temperature detector and Monte Carlo sampling approach for uncertainty assessment

  • I. Meleshenkovskii
  • N. Pauly
  • P. -E. Labeau
Regular Article
  • 10 Downloads

Abstract.

In recent years room temperature medium resolution scintillation devices, such as LaBr3(Ce), have attracted much interest as possible alternatives to traditional spectrometers based on HPGe and NaI detectors, for the determination of the uranium enrichment in safeguards applications. This paper focuses on the investigation of possibilities and limits of a net peak area based methodology used for the determination of the uranium enrichment without use of calibration standards and introduces the isotopic code MCSIGMA for LaBr3(Ce) scintillators. Tests are conducted with a room temperature, medium resolution spectrometer based on a 2×2 inch LaBr3(Ce) scintillator using which spectra of different statistical quality are obtained from certified uranium standards. Gamma peaks in the 143-1001keV energy range are used as uranium gamma-ray signatures. Results indicate a promising performance of the applied methodology with a room temperature medium resolution scintillator of the LaBr3(Ce) type, however at a cost of significantly higher uncertainty budget on the derived enrichment compared to HPGe, especially for natural and depleted uranium samples. This uncertainty budget is primarily influenced by the statistical quality of the measured spectra. Implemented algorithms and analysis routines are described in detail and presented.

References

  1. 1.
    E.V.D. Van Loef, P. Dorenbos, C.W.E. Van Eijk, K.W. Kraemer, H.U. Guedel, Appl. Phys. Lett. 79, 1573 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Maghraby, K.S. Alzimami, M.A. Alkhorayef, K.G. Alsafi, A. Mae, A.A. Alfuraih, A.A. Alghamdi, N.M. Spyrou, Radiat. Phys. Chem. 95, 137 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    E.I. Prosper, O.J. Abebe, U.J. Ogri, Lat. Am. J. Phys. Educ. 6, 162 (2012)Google Scholar
  4. 4.
    J.P. Sullivan, M.W. Rawool-Sullivan, T.R. Wenz, J. Radioanal. Nucl. Chem. 276, 699 (2008)CrossRefGoogle Scholar
  5. 5.
    W. Ruhter, T.-f. Wang, C.F. Hayden, Uranium enrichment measurements without calibration using gamma rays above 100keV, in Symposium on International Safeguards, Verification and Nuclear Material Security, Vienna, Austria, October 29-November 1, 2001 (IAEA, 2001)Google Scholar
  6. 6.
    P. Matussek, Accurate Determination of the ${}^{235}$U Isotope Abundance by Gamma Spectrometry, a User’s Manual for the Certified Reference Material EC-NRM-171/NBS-SRM-969. Karlsruhe, Germany (1985)Google Scholar
  7. 7.
    H.A. Smith Jr., The measurement of uranium enrichment, in Passive non-destructive assay of nuclear materials (NUREG/CR-5550, 1985)Google Scholar
  8. 8.
    J.K. Sprinkle Jr., A. Christiansen, R. Cole, M.L. Collins, S.-T. Hsue, P.L. Knepper, T.O. Mckown, R. Siebelist, Appl. Radiat. Isot. 48, 1525 (1997)CrossRefGoogle Scholar
  9. 9.
    R. Gunnink, A guide for using NaIGEM code, version 1.5 for DOS and Windows (2001)Google Scholar
  10. 10.
    R. Gunnink, W.D. Ruhter, P. Miller, J. Goerten, M. Swinhoe, H. Wagner, J. Verplacke, M. Bickel, S. Abousahl, MGAU: a new analysis code for measuring U-235 enrichments in arbitrary samples, in IAEA Symposium on International Safeguards, Vienna, Austria, March 8–14, 1994 (IAEA, 1999) Lawrence Livermore National Laboratory (UCRL-JC-114713)Google Scholar
  11. 11.
    T.E. Sampson, T.A. Kelley, PC/FRAM: A code for the nondestructive measurement of the isotopic composition of actinides for safeguards applications, Los Alamos National Laboratory Report LA-UR-96-3543 (1996)Google Scholar
  12. 12.
    D. Reilly, N. Ensslin, H. Hastings Smith Jr., S. Kreiner, Passive Nondestructive Assay of Nuclear Materials, NuREG/CR-5550 LA-UR-90-732. Los Alamos National Laboratory (Los Alamos, NM, 1991)Google Scholar
  13. 13.
    T. Dragnev, Appl. Radiat. Isot. 44, 613 (1993)CrossRefGoogle Scholar
  14. 14.
    H. Yücel, Appl. Radiat. Isot. 65, 1269 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Morel, C. Hill, M. Bickel, A. Alonso-Munoz, S. Napier, B. Thaurel, Appl. Radiat. Isot. 52, 509 (2000)CrossRefGoogle Scholar
  16. 16.
    S. Abousahl, A. Michiels, M. Bickel, R. Gunnink, J. Verplancke, Nucl. Instrum. Methods Phys. Res. Sect. A 368, 443 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    R. Gunnink, A New One-Detector Analysis Method for Rapid High-Precision Plutonium Isotopic Measurements, Presented at the 9th ESARDA Symposium on Safeguards and Nuclear Material Management, London, UK, 12–14 May 1987Google Scholar
  18. 18.
    R. Gunnink, MGA: A Gamma-Ray Spectrum Analysis Code for Determining Plutonium Isotopic Abundances, Lawrence Livermore National Laboratory Report UCRL-LR-03220, April 1990Google Scholar
  19. 19.
    T. Twomey, R. Keyser, S. Haywood, W. Parker, D. Clark, T.-F. Wang, W. Buckley, W. Romine, K. Raschke, W. Ruhter, Recent Developments of the MGA++ Codes, in Proceedings of ESARDA 21rd Annual Meeting, Sevilla 1999, p. 745–751Google Scholar
  20. 20.
    A.C. Simon, I. Espagnon, A. Pluquet, IGA (actinides gamma isotopy) An automatic software for the determination of actinides isotopic abundances, presented at the International Workshop on Gamma Spectrometry Analysis Codes for U and Pu Isotopics, Oak Ridge, Tennessee, November 03–07, 2008Google Scholar
  21. 21.
    J.G. Fleissner, T.W. Coressel, D.A. Freier, L.L. Macklin, Nucl. Mater. Management XVIII, 814 (1989)Google Scholar
  22. 22.
    M.J. Koskelo, B. McGinnis, P. Peerani, Sustainability of gamma-ray isotopic evaluation codes, in INMM 51st Annual Meeting, Baltimore, MD, USA, July 11–15, 2010Google Scholar
  23. 23.
    B.S. Carpenter, J.W. Gramlich, R.R. Greenberg, L.A. Machlan, P. DeBievre, H.L. Eschbach, H. Meyer, J. Van Audenhove, V.E. Connolly, N.M. Trahey, A.C. Zook, Uranium-235 Isotope Abundance Standard Reference Materials for Gamma Spectrometry Measurements, U.S. Department of Commerce, Malcolm Baldrige, Secretary National Bureau of Standards, 1986Google Scholar
  24. 24.
    I. Meleshenkovskii, A. Borella, K. Van der Meer, M. Bruggeman, N. Pauly, P.E. Labeau, P. Schillebeeckx, Instrumentation effects on U and Pu CBNM standards spectra quality measured on a 500mm^3 CdZnTe and a $2 \times 2$ inch LaBr$_{3}$(Ce) detectors, in Proceedings of the ANIMMA 2017 conference, June 2017, Liege, BelgiumGoogle Scholar
  25. 25.
    R.J.S. Harry, J.K. Aaldijk, J.K. Braak, Gamma-spectrometric determination of isotopic composition without use of standards, IAEA-SM-201/66 (1976)Google Scholar
  26. 26.
    H. Ramebäck, A. Vesterlund, A. Tovedal, U. Nygren, L. Wallberg, E. Holm, C. Ekberg, G. Skarnemark, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 2535 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    G. Gilmore, Practical Gamma-ray Spectrometry, 2nd edition (John Wiley & Sons, Ltd., 2008)Google Scholar
  28. 28.
    R.G. Helmer, M.A. Lee, Analytical functions for fitting peaks from Ge semiconductor detectors, Idaho National Engineering Laboratory, EG & G Idaho, Inc., Idaho Falls, Idaho 83415, USA, 1980Google Scholar
  29. 29.
    D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963)CrossRefGoogle Scholar
  30. 30.
    J.J. Moré, The Levenberg-Marquardt Algorithm: Implementation and Theory, in Numerical Analysis, edited by G.A. Watson, Lecture Notes in Mathematics, Vol. 630 (Springer-Verlag, 1977) pp. 105--116Google Scholar
  31. 31.
    Wei Hu, Jing Xie, Henry Wai Chau, Bing Cheng Si, Environ. Syst. Res. 4, 4 (2015)CrossRefGoogle Scholar
  32. 32.
    A.M. Brown, Comput. Methods Prog. Bio. 65, 191 (2001)CrossRefGoogle Scholar
  33. 33.
    Marie-Christine Lépy, Presentation of the COLEGRAM software, Laboratoire National Henri Becquerel, LNHB 04/26, 2004Google Scholar
  34. 34.
    A.L. Nichols, D.L. Aldama, M. Verpelli, Handbook of nuclear data for safeguards: database extensions, INDC International Nuclear Data Committee, INDC(NDS)-0534, 2008Google Scholar
  35. 35.
    G. Upton, I. Cook, Understanding Statistics (Oxford University Press, 1996)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Belgian Nuclear Research CentreSCK•CEN, Environment, Health and Safety InstituteMolBelgium
  2. 2.Université libre de BruxellesService de Métrologie Nucléaire (CP/165/84)BruxellesBelgium

Personalised recommendations