Advertisement

Monte Carlo nuclear data adjustment via integral information

  • D. RochmanEmail author
  • E. Bauge
  • A. Vasiliev
  • H. Ferroukhi
  • S. Pelloni
  • A. J. Koning
  • J. Ch. Sublet
Regular Article

Abstract.

In this paper, we present three Monte Carlo methods to include integral benchmark information into the nuclear data evaluation procedure: BMC, BFMC and Mocaba. They allow to provide posterior nuclear data and their covariance information in a Bayesian sense. Different examples will be presented, based on 14 integral quantities with fast neutron spectra (keff and spectral indices). Updated nuclear data for 235U, 238U and 239Pu are considered and the posterior nuclear data are tested with MCNP simulations. One of the noticeable outcomes is the reduction of uncertainties for integral quantities, obtained from the reduction of the nuclear data uncertainties and from the rise of correlations between cross sections of different isotopes. Finally, the posterior nuclear data are tested on an independent set of benchmarks, showing the limit of the adjustment methods and the necessity for selecting well representative systems.

References

  1. 1.
    N. Otuka et al., Nucl. Data Sheets 120, 272 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Briggs (Editor), International Handbook of evaluated Criticality Safety Benchmark Experiments (Organization for Economic Co-operation and Development, Nuclear Energy Agency, 2004) NEA/NSC/DOC(95)03/IGoogle Scholar
  3. 3.
    Assessment of Existing Nuclear Data Adjustment Methodologies, A report by the Working Party on International Evaluation Co-operation of the NEA Nuclear Science Committee, WPEC-33, NEA/NSC/WPEC/DOC(2010)429, OECD (2011)Google Scholar
  4. 4.
    G. Palmiotti, M. Salvatores, Sci. Technol. Nucl. Install. 2012, 529623 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Aufiero, M. Fratoni, G. Palmiotti, M. Salvatores, Continuous Energy Cross Section Adjustment: a New Method to Generalize Nuclear Data Assimilation for a Wider Range of Applications, in International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, April 16–20, 2017 (2017)Google Scholar
  6. 6.
    C. de Saint Jean, P. Archier, E. Privas, G. Noguère, EPJ Web of Conferences 146, 02007 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Pelloni, Ann. Nucl. Energy 106, 33 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Pelloni, D. Rochman, Ann. Nucl. Energy 115, 323 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Salvatores et al., Nucl. Data Sheets 118, 38 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    C. de Saint Jean, P. Archier, E. Privas, G. Noguère, O. Litaize, P. Leconte, Nucl. Data Sheets 123, 178 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    A. Trkov, M. Herman, D.A. Brown, ENDF-6 Formats Manual, CSEWG Document ENDF-102, Report BNL-90365-2009 Rev.2, Brookhaven National Laboratory (October, 2012)Google Scholar
  13. 13.
    R.E. MacFarlane, A.C. Kahler, Nucl. Data Sheets 111, 2739 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, G. Perret, Eur. Phys. J. N 4, 7 (2018)Google Scholar
  15. 15.
    J. Dyrda, N. Soppera, I. Hill, M. Bossant, J. Gulliford, EPJ Web of Conferences 146, 06026 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Ishikawa, Nucl. Data Sheets 109, 2778 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    E. Peters, F. Sommer, M. Stuke, Ann. Nucl. Energy 92, 355 (2016)CrossRefGoogle Scholar
  18. 18.
    T. Ivanova, E. Ivanov, G.E. Bianchi, Nucl. Sci. Eng. 178, 311 (2017)CrossRefGoogle Scholar
  19. 19.
    E. Alhassan, H. Sjostrand, P. Helgesson, M. Osterlund, S. Pomp, A.J. Koning, D. Rochman, Ann. Nucl. Energy 96, 158 (2016)CrossRefGoogle Scholar
  20. 20.
    D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, Eur. Phys. J. N 3, 14 (2017)Google Scholar
  21. 21.
    A.J. Koning, Eur. Phys. J. A 51, 184 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    E. Bauge, G. Bélier, J. Cartier, A. Chatillon, J.M. Daugas, J.P. Delaroche, P. Dossantos-Uzarralde, H. Duarte, N. Dubray, M. Ducauze-Philippe, L. Gaudefroy, G. Gosselin, T. Granier, S. Hilaire, Huu-Tai P. Chau, J.M. Laborie, B. Laurent, X. Ledoux, C. Le Luel, V. Méot, P. Morel, B. Morillon, O. Roig, P. Romain, J. Taieb, C. Varignon, N. Authier, P. Casoli, B. Richard, Eur. Phys. J. A 48, 113 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    E. Bauge, M. Dupuis, S. Hilaire, S. Péru, A.J. Koning, D. Rochman, S. Goriely, Nucl. Data Sheets 118, 32 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    R. Capote, D.L. Smith, A. Trkov, M. Meghzifene, J. ASTM Int. 9, 1 (2012)Google Scholar
  25. 25.
    D.L. Smith, A Unified Monte Carlo Approach to Fast Neutron Cross Section Data Evaluation, in Proceedings of the 8th International Topical Meeting on Nuclear Applications and Utilization of Accelerators, Pocatello, July 29 - August 2, 2007, p. 736Google Scholar
  26. 26.
    P. Helgesson, H. Sjöstrand, A.J. Koning, J. Ryden, D. Rochman, E. Alhassan, S. Pomp, Prog. Nucl. Energy 96, 76 (2017)CrossRefGoogle Scholar
  27. 27.
    E. Bauge, Nucl. Data Sheets 123, 201 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    D.F. Gatz, L. Smith, Atmos. Environ. 29, 1185 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    A. Hoefer, O. Buss, M. Hennebach, M. Schmid, D. Porsch, Ann. Nucl. Energy 77, 514 (2015)CrossRefGoogle Scholar
  30. 30.
    T. Watanabe, T. Endo, A. Yamamoto, Y. Kodama, Y. Ohoka, T. Ushio, J. Nucl. Sci. Technol. 51, 590 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Pelloni, Ann. Nucl. Energy 72, 373 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Rochman, A.J. Koning, Nucl. Sci. Eng. 169, 68 (2011)CrossRefGoogle Scholar
  33. 33.
    D. Rochman, A.J. Koning, Nucl. Sci. Eng. 172, 287 (2012)CrossRefGoogle Scholar
  34. 34.
    D. Rochman, A.J. Koning, Nucl. Sci. Eng. 170, 265 (2012)CrossRefGoogle Scholar
  35. 35.
    D. Rochman, A.J. Koning, S.C. van der Marck, Fusion Eng. Design 85, 669 (2010)CrossRefGoogle Scholar
  36. 36.
    D. Rochman, A.J. Koning, S.C. van der Marck, Ann. Nucl. Energy 36, 810 (2009)CrossRefGoogle Scholar
  37. 37.
    B. Efron, R. Tibshirani, Science 253, 390 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kong, A note on importance sampling using standardized weights, Tech. Report 348, Unversity of Chicago, July 1992Google Scholar
  39. 39.
    A. Vasiliev, D. Rochman, M. Pecchia, H. Ferroukhi, Energies 9, 1039 (2016)CrossRefGoogle Scholar
  40. 40.
    M.T. Pigni, M. Herman, P. Oblozinsky, F.S. Dietrich, Phys. Rev. C 83, 24601 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    M.B. Chadwick T. Kawano, P. Talou, E. Bauge, P. Dossantos-Uzarralde, P.E. Garett, Nucl. Data Sheets 108, 2742 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Paul Scherrer InstitutVilligenSwitzerland
  2. 2.CEA, DAM, DIFArpajon CedexFrance
  3. 3.Nuclear Data SectionInternational Atomic Energy AgencyViennaAustria

Personalised recommendations