Advertisement

Self-excited and hidden attractors in a novel chaotic system with complicated multistability

  • Hayder Natiq
  • M. R. M. Said
  • M. R. K. Ariffin
  • Shaobo He
  • Lamberto Rondoni
  • Santo BanerjeeEmail author
Regular Article

Abstract.

In this paper, a new 3D chaotic system with trigonometric function term as a nonlinear controller is proposed. Depending on the nonlinear controller and the value of the parameters, the proposed system exhibits self-excited attractor with an unstable equilibrium, and hidden attractor with no equilibrium or a stable equilibrium. In addition, the unusual and striking dynamic behavior of the coexistence of self-excited chaotic with periodic attractors, two self-excited chaotic attractors with periodic attractor, three periodic attractors, hidden chaotic with point attractors, two hidden chaotic attractors, and four hidden chaotic attractors are explored by selecting appropriate initial values. Consequently, the proposed system has high sensitivity to its initial values and parameters, hence it can be applied in chaos-based cryptographic applications. Thus, the non-periodicity of coexisting attractors of the system is investigated through Lyapunov exponents and Sample Entropy. To demonstrate the performance of the system in real applications, we construct a pseudo-random number generator (PRNG) based on the hidden attractor case. The randomness test results show that the generated PRNG pass all the statistical tests.

References

  1. 1.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    O.E. Rössler, Phys. Lett. A 57, 397 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Sprott, Phys. Rev. E 50, R647 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    G. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999)CrossRefGoogle Scholar
  5. 5.
    S. Banerjee, S.K. Palit, S. Mukherjee, M. Ariffin, L. Rondoni, Chaos 3, 033105 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    L. Rondoni, M.R.K. Ariffin, R. Varatharajoo, S. Mukherjee, S.K. Palit, S. Banerjee, Opt. Commun. 387, 257 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S. Theesar, Jeeva Sathya, Santo Banerjee, P. Balasubramaniam, Nonlinear Dyn. 70, 1977 (2012)CrossRefGoogle Scholar
  8. 8.
    Papri Saha, Santo Banerjee, A. Roy Chowdhury, Phys. Lett. A 326, 133 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G.A. Leonov, N.V. Kuznetsov, Int. J. Bifurc. Chaos 23, 1330002 (2013)CrossRefGoogle Scholar
  10. 10.
    Alexander N. Pisarchik, Ulrike Feudel, Phys. Rep. 540, 167 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F.T. Arecchi, R. Meucci, G. Puccioni, J. Tredicce, Phys. Rev. Lett. 49, 1217 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    J.C. Sprott, X. Wang, G. Chen, Int. J. Bifurc. Chaos 23, 1350093 (2013)CrossRefGoogle Scholar
  13. 13.
    C. Li, J.C. Sprott, Int. J. Bifurc. Chaos 24, 1450131 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Kengne, Z.T. Njitacke, H.B. Fotsin, Nonlinear Dyn. 83, 751 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Wang, F. Yuan, G. Chen, Y. Zhang, Chaos 28, 013125 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Guanrong Chen, Chaotification via feedback: the discrete case, in Chaos Control (Springer, Berlin, Heidelberg, 2003) p. 159Google Scholar
  17. 17.
    Hongjie, Yu, Liu Yanzhu, Phys. Lett. A 314, 292 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J.C. Sprott, S. Jafari, A.J.M. Khalaf, T. Kapitaniak, Eur. Phys. J. ST 226, 1979 (2017)CrossRefGoogle Scholar
  19. 19.
    Sajad Jafari, Viet-Thanh Pham, Tomasz Kapitaniak, Int. J. Bifurc. Chaos 26, 1650031 (2016)CrossRefGoogle Scholar
  20. 20.
    Gonzalo Alvarez, Shujun Li, Int. J. Bifurc. Chaos 16, 2129 (2006)CrossRefGoogle Scholar
  21. 21.
    Santo Banerjee, Chaos, Solitons Fractals 42, 745 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Santo Banerjee, Sumona Mukhopadhyay, Lamberto Rondoni, Opt. Lasers Eng. 50, 950 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Natiq, N. Al-Saidi, M.R.M. Said, A. Kilicman, Eur. Phys. J. Plus 133, 6 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Natiq, S. Banerjee, S. He, M.R.M. Said, A. Kilicman, Chaos, Solitons Fractals 114, 506 (2018)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhongyun Hua, Yicong Zhou, Inf. Sci. 339, 237 (2016)CrossRefGoogle Scholar
  26. 26.
    Santo Banerjee, D. Ghosh, A. Roy Chowdhury, Phys. Scr. 78, 015010 (2008)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    G.C. Layek, An Introduction to Dynamical Systems and Chaos (Springer, New Delhi, 2015)Google Scholar
  28. 28.
    C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Int. J. Multime. Intell. Secur. 1, 320 (2010)Google Scholar
  29. 29.
    Steven M. Pincus, Proc. Natl. Acad. Sci. 88, 2297 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    M. Costa, C.K. Peng, A.L. Goldberger, J.M. Hausdorff, Physica A 330, 53 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    J.S. Richman, J.R. Moorman, Am. J. Physiol.-Heart Circ. Physiol. 278, H2039 (2000)CrossRefGoogle Scholar
  32. 32.
    F. Kaffashi, R. Foglyano, C.G. Wilson, K.A. Loparo, Phys. D 237, 3069 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hayder Natiq
    • 1
  • M. R. M. Said
    • 1
    • 2
    • 3
  • M. R. K. Ariffin
    • 1
    • 3
  • Shaobo He
    • 6
  • Lamberto Rondoni
    • 3
    • 4
    • 5
  • Santo Banerjee
    • 1
    • 3
    Email author
  1. 1.Institute for Mathematical ResearchUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of MathematicsUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Malaysia-Italy Centre of Excellence for Mathematical ScienceUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Dipartimento di Scienze Matematiche and Graphene@Polito LabPolitecnico di TorinoTurinItaly
  5. 5.INFNSezione di TorinoTorinoItaly
  6. 6.School of Physics and ElectronicsCentral South UniversityChangshaChina

Personalised recommendations