Ground state of a bosonic massive charged particle in the presence of external fields in a Gödel-type spacetime

  • Edilberto O. SilvaEmail author
Regular Article


The relativistic quantum dynamics of a spinless charged particle interacting with both Aharonov-Bohm and Coulomb-type potentials in the Gödel-type spacetime is considered. The dynamics of the system is governed by the Klein-Gordon equation with interactions. We verify that it is possible to establish a quantum condition between the energy of the particle and the parameter that characterizes the vorticity of the spacetime. We rigorously analyze the ground state of the system and determine the corresponding wave functions to it.


  1. 1.
    W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer Science Business Media, 2000)
  2. 2.
    V. Berestetskii, L. Pitaevskii, E. Lifshitz, Quantum Electrodynamics, Vol. 4 (Elsevier Science, 2012)Google Scholar
  3. 3.
    S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 93, 045033 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    W. Mück, Phys. Rev. D 97, 025011 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Wang, X. Wang, X. Jiang, Phys. Rev. E 91, 043108 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Canbridge, 2000)Google Scholar
  7. 7.
    E.R. Figueiredo Medeiros, E.R. Bezerra de Mello, Eur. Phys. J. C 72, 2051 (2012)CrossRefGoogle Scholar
  8. 8.
    B.Q. Wang, Z.W. Long, C.Y. Long, S.R. Wu, Mod. Phys. Lett. A 33, 1850025 (2018)CrossRefGoogle Scholar
  9. 9.
    D. Chowdhury, B. Basu, Phys. Rev. D 90, 125014 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Bakke, C. Furtado, Phys. Rev. D 82, 084025 (2010)CrossRefGoogle Scholar
  11. 11.
    L.C.N. Santos, C.C. Barros, Eur. Phys. J. C 78, 13 (2018)CrossRefGoogle Scholar
  12. 12.
    L.B. Castro, Eur. Phys. J. C 76, 61 (2016)CrossRefGoogle Scholar
  13. 13.
    Z. Wang, Z.w. Long, C.y. Long, M.l. Wu, Eur. Phys. J. Plus 130, 36 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Gödel, Rev. Mod. Phys. 21, 447 (1949)CrossRefGoogle Scholar
  15. 15.
    C.M. Brown, O. DeWolfe, JHEP 01, 32 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Herrera, J. Ibáñez, A. Di Prisco, Phys. Rev. D 87, 087503 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Khodabakhshi, A. Shojai, Phys. Rev. D 92, 123541 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S.L. Li, X.H. Feng, H. Wei, H. Lü, Eur. Phys. J. C 77, 289 (2017)CrossRefGoogle Scholar
  19. 19.
    M.J. Rebouças, J. Tiomno, Phys. Rev. D 28, 1251 (1983)MathSciNetCrossRefGoogle Scholar
  20. 20.
    M.M. Som, A.K. Raychaudhuri, Proc. R. Soc. London A 304, 81 (1968)CrossRefGoogle Scholar
  21. 21.
    H.L. Carrion, M.J. Rebouças, A.F.F. Teixeira, J. Math. Phys. 40, 4011 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Das, J. Gegenberg, Gen. Relativ. Gravit. 40, 2115 (2008)CrossRefGoogle Scholar
  23. 23.
    N. Drukker, B. Fiol, J. Simón, J. Cosmol. Astropart. Phys. 10, 012 (2004)CrossRefGoogle Scholar
  24. 24.
    J. Carvalho, A.M. de M. Carvalho, C. Furtado, Eur. Phys. J. C 74, 2935 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Law, M.K. Srivastava, R.K. Bhaduri, A. Khare, J. Phys. A 25, L183 (1992)CrossRefGoogle Scholar
  26. 26.
    A. Ronveaux, F. Arscott, Heun’s Differential Equations, in Oxford science publications (Oxford University Press, 1995)Google Scholar
  27. 27.
    E. Arriola, A. Zarzo, J. Dehesa, J. Comput. Appl. Math. 37, 161 (1991)MathSciNetCrossRefGoogle Scholar
  28. 28.
    F. Caruso, J. Martins, V. Oguri, Ann. Phys. 347, 130 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal do MaranhãoSão LuísBrazil

Personalised recommendations