Advertisement

Ground state of a bosonic massive charged particle in the presence of external fields in a Gödel-type spacetime

  • Edilberto O. Silva
Regular Article
  • 16 Downloads

Abstract.

The relativistic quantum dynamics of a spinless charged particle interacting with both Aharonov-Bohm and Coulomb-type potentials in the Gödel-type spacetime is considered. The dynamics of the system is governed by the Klein-Gordon equation with interactions. We verify that it is possible to establish a quantum condition between the energy of the particle and the parameter that characterizes the vorticity of the spacetime. We rigorously analyze the ground state of the system and determine the corresponding wave functions to it.

References

  1. 1.
    W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer Science Business Media, 2000)  https://doi.org/10.1007/978-3-662-04275-5
  2. 2.
    V. Berestetskii, L. Pitaevskii, E. Lifshitz, Quantum Electrodynamics, Vol. 4 (Elsevier Science, 2012)Google Scholar
  3. 3.
    S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 93, 045033 (2016)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    W. Mück, Phys. Rev. D 97, 025011 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Wang, X. Wang, X. Jiang, Phys. Rev. E 91, 043108 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Canbridge, 2000)Google Scholar
  7. 7.
    E.R. Figueiredo Medeiros, E.R. Bezerra de Mello, Eur. Phys. J. C 72, 2051 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    B.Q. Wang, Z.W. Long, C.Y. Long, S.R. Wu, Mod. Phys. Lett. A 33, 1850025 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    D. Chowdhury, B. Basu, Phys. Rev. D 90, 125014 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    K. Bakke, C. Furtado, Phys. Rev. D 82, 084025 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    L.C.N. Santos, C.C. Barros, Eur. Phys. J. C 78, 13 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    L.B. Castro, Eur. Phys. J. C 76, 61 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Wang, Z.w. Long, C.y. Long, M.l. Wu, Eur. Phys. J. Plus 130, 36 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Gödel, Rev. Mod. Phys. 21, 447 (1949)ADSCrossRefGoogle Scholar
  15. 15.
    C.M. Brown, O. DeWolfe, JHEP 01, 32 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    L. Herrera, J. Ibáñez, A. Di Prisco, Phys. Rev. D 87, 087503 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S. Khodabakhshi, A. Shojai, Phys. Rev. D 92, 123541 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S.L. Li, X.H. Feng, H. Wei, H. Lü, Eur. Phys. J. C 77, 289 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Rebouças, J. Tiomno, Phys. Rev. D 28, 1251 (1983)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M.M. Som, A.K. Raychaudhuri, Proc. R. Soc. London A 304, 81 (1968)ADSCrossRefGoogle Scholar
  21. 21.
    H.L. Carrion, M.J. Rebouças, A.F.F. Teixeira, J. Math. Phys. 40, 4011 (1999)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Das, J. Gegenberg, Gen. Relativ. Gravit. 40, 2115 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    N. Drukker, B. Fiol, J. Simón, J. Cosmol. Astropart. Phys. 10, 012 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    J. Carvalho, A.M. de M. Carvalho, C. Furtado, Eur. Phys. J. C 74, 2935 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    J. Law, M.K. Srivastava, R.K. Bhaduri, A. Khare, J. Phys. A 25, L183 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    A. Ronveaux, F. Arscott, Heun’s Differential Equations, in Oxford science publications (Oxford University Press, 1995)Google Scholar
  27. 27.
    E. Arriola, A. Zarzo, J. Dehesa, J. Comput. Appl. Math. 37, 161 (1991)MathSciNetCrossRefGoogle Scholar
  28. 28.
    F. Caruso, J. Martins, V. Oguri, Ann. Phys. 347, 130 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal do MaranhãoSão LuísBrazil

Personalised recommendations