Advertisement

Power-law inflation with minimal and nonminimal coupling

  • Mithun Bairagi
  • Amitava ChoudhuriEmail author
Regular Article
  • 40 Downloads

Abstract.

Power-law inflationary scenarios based on minimal and non-minimal coupling of a scalar field to gravity with exponential- and power-law potential, respectively, are studied using the symmetry-based approach. In particular, we obtained only one parameter Lie point symmetry for both the minimal and non-minimal coupling cases and it is interesting to note that the non-minimal coupled equation is invariant under a scale transformation. We find the exact analytical group invariant solutions from invariant curve condition for both the minimal and non-minimal cases of the power-law inflationary model. The solutions obtained are consistent with the Friedmann equations subject to constraints on the inflationary potential parameter \( \lambda\) for the minimal case and on the coupling parameter \( \zeta\) for the non-minimal case. In this scenario, we find transformation relations for various inflationary parameters e.g. amplitude of the scalar power spectrum, spectral index, slow-roll parameters (SRP), tensor-to-scalar perturbation ratio, equation of state parameters, non-Gaussianity parameter as well as the form of the potential in two different frames, namely the Jordan and Einstein frames by making use of the conformal transformation. The results for various inflationary parameters for the non-minimal case are presented in the background of Planck2015 and Planck2018 and are in good agreement with the cosmological observations if the non-minimal coupling parameter is chosen properly. We treat minimally and non-minimally coupled scalar field equations by the dynamical system theory and present critical point analysis. By checking the stability of the critical points in the phase space for both cases we have shown that the solutions obtained from the Lie symmetry approach are the stable attractor solutions.

References

  1. 1.
    S. Weinberg, Cosmology (Oxford University Press Inc., New York, 2008)Google Scholar
  2. 2.
    A.H. Guth, Phys. Rev. D 23, 347 (1981)CrossRefGoogle Scholar
  3. 3.
    E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, New York, 1990)Google Scholar
  4. 4.
    V.F. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, 2005)Google Scholar
  5. 5.
    D.H. Lyth, A. Riotto, Phys. Rep. 314, 1 (1999)CrossRefGoogle Scholar
  6. 6.
    A.D. Linde, Phys. Lett. B 108, 389 (1982)CrossRefGoogle Scholar
  7. 7.
    R. Kallosh, A. Linde, D. Roest, Phys. Rev. Lett. 112, 011303 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Nozari, S.D. Sadatian, Mod. Phys. Lett. A 23, 2933 (2008)CrossRefGoogle Scholar
  9. 9.
    J.A. Stein-Schabas, Phys. Rev. D 35, 2345 (1987)CrossRefGoogle Scholar
  10. 10.
    F. Lucchin, S. Matarrese, Phys. Rev. D 32, 1316 (1985)CrossRefGoogle Scholar
  11. 11.
    L.F. Abbott, M.B. Wise, Nucl. Phys. B 244, 541 (1987)CrossRefGoogle Scholar
  12. 12.
    E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004)CrossRefGoogle Scholar
  13. 13.
    E. Elizalde, S. Nojiri, S.D. Odintsov, D. Saez-Gomez, V. Faraoni, Phys. Rev. D 77, 106005 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J.J. Halliwell, Phys. Lett. B 185, 341 (1987)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J.D. Barrow, Phys. Lett. B 187, 12 (1987)CrossRefGoogle Scholar
  16. 16.
    D. Babich, P. Creminelli, M. Zaldarriaga, J. Cosmol. Astropart. Phys. 08, 009 (2004) arXiv:astro-ph/0405356CrossRefGoogle Scholar
  17. 17.
    A.P.S. Yadav, B.D. Wandelt, Adv. Astron. 2010, 1 (2010) arXiv:1006.0275CrossRefGoogle Scholar
  18. 18.
    Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 594, A17 (2016) arXiv:1502.01592CrossRefGoogle Scholar
  19. 19.
    K. Asadi, K. Nozari, Nucl. Phys. B 934, 118 (2018)CrossRefGoogle Scholar
  20. 20.
    N.A. Chernikov, E.A. Tagirov, Ann. Inst. H. Poincaré A 9, 109 (1968)Google Scholar
  21. 21.
    C.G. Callan, S. Coleman, R. Jackiw, Ann. Phys. 59, 42 (1970)CrossRefGoogle Scholar
  22. 22.
    N.D. Birrell, P.C. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, UK, 1980)Google Scholar
  23. 23.
    B. Nelson, P. Panangaden, Phys. Rev. D 25, 1019 (1982)CrossRefGoogle Scholar
  24. 24.
    S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Nozari, N. Rashidi, Phys. Rev. D 86, 043505 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Jordan, Z. Phys. 157, 112 (1959)CrossRefGoogle Scholar
  27. 27.
    C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)MathSciNetCrossRefGoogle Scholar
  28. 28.
    V. Faraoni, Phys. Rev. D 62, 023504 (2000)CrossRefGoogle Scholar
  29. 29.
    V. Faraoni, E. Gunzig, P. Nardone, Fundam. Cosmic Phys. 20, 121 (1999)Google Scholar
  30. 30.
    E. Komatsu, T. Futamase, Phys. Rev. D 59, 064029 (1999)CrossRefGoogle Scholar
  31. 31.
    R. Fakir, W.G. Unruh, Astrophys. J. 394, 396 (1992)CrossRefGoogle Scholar
  32. 32.
    V. Faraoni, Phys. Rev. D 53, 6813 (1996)CrossRefGoogle Scholar
  33. 33.
    J.R. Morris, Class. Quantum Grav. 18, 2977 (2001)CrossRefGoogle Scholar
  34. 34.
    J.P. Uzan, Phys. Rev. D 59, 123510 (1999)CrossRefGoogle Scholar
  35. 35.
    A.A. Starobinsky, S. Tsujikawa, J. Yokoyama, Nucl. Phys. B 610, 383 (2001)CrossRefGoogle Scholar
  36. 36.
    L. Amendola, Phys. Rev. D 60, 043501 (1999)CrossRefGoogle Scholar
  37. 37.
    R. Fakir, W.G. Unruh, Phys. Rev. D 41, 1783 (1990)CrossRefGoogle Scholar
  38. 38.
    K. Nozari, S. Shafizadeh, Phys. Scr. 82, 015901 (2010)CrossRefGoogle Scholar
  39. 39.
    P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)Google Scholar
  40. 40.
    Amitava Choudhuri, Phys. Scr. 90, 055004 (2015)CrossRefGoogle Scholar
  41. 41.
    K. Andriopoulos, P.G.L. Leach, Cent. Eur. J. Phys. 6, 469 (2008)Google Scholar
  42. 42.
    Amitava Choudhuri, Nonlinear Evolution Equations: Lagrangian Approach (LAP Lambert Academic Publishing, 2011)Google Scholar
  43. 43.
    P. Kanti, Olive, Phys. Rev. D 60, 043502 (1999)CrossRefGoogle Scholar
  44. 44.
    A.B. Burd, J.D. Barrow, Nucl. Phys. B 308, 929 (1988)CrossRefGoogle Scholar
  45. 45.
    E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004)CrossRefGoogle Scholar
  46. 46.
    F.M. Mahomed, P.G.L. Leach, Quaest. Math. 8, 241 (1985)CrossRefGoogle Scholar
  47. 47.
    D.S. Salopek, J.R. Bond, J.M. Bardeen, Phys. Rev. D 40, 1753 (1989)CrossRefGoogle Scholar
  48. 48.
    F.L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008)CrossRefGoogle Scholar
  49. 49.
    N. Makino, M. Sasaki, Prog. Theor. Phys. 86, 103 (1991)CrossRefGoogle Scholar
  50. 50.
    T. Futamase, T. Rothman, R. Matzner, Phys. Rev. D 39, 405 (1989)CrossRefGoogle Scholar
  51. 51.
    E. Komatsu, T. Futamase, Phys. Rev. D 58, 023004 (1998) 58CrossRefGoogle Scholar
  52. 52.
    E. Komatsu, T. Futamase, Phys. Rev. D 59, 064029 (1999)CrossRefGoogle Scholar
  53. 53.
    T. Qiu, J. Cosmol. Astropart. Phys. 06, 041 (2012)CrossRefGoogle Scholar
  54. 54.
    Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 594, A20 (2016) arXiv:1502.02114v1CrossRefGoogle Scholar
  55. 55.
    G. Hinshaw, D. Larson, E. Komatsu et al., Astrophys. J. Suppl. Ser. 208, 19 (2013)CrossRefGoogle Scholar
  56. 56.
    Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 571, A22 (2013)CrossRefGoogle Scholar
  57. 57.
    P.A.R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014)CrossRefGoogle Scholar
  58. 58.
    F. Wu, Y. Li, Y. Lu, X. Chen, Sci. China Phys. Mech. Astron. 57, 1449 (2014)CrossRefGoogle Scholar
  59. 59.
    Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 594, A13 (2016) arXiv:1502.01589v2CrossRefGoogle Scholar
  60. 60.
    Planck Collaboration (P.A.R. Ade), Planck2018 results. X. Constraints on inflation, arXiv:1807.06211v1Google Scholar
  61. 61.
    K.T. Alligood, T. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer-Verlag, New York, 1997)Google Scholar
  62. 62.
    E.F. Bunn, A.R. Liddle, M.J. White, Phys. Rev. D 54, R5917 (1996)CrossRefGoogle Scholar
  63. 63.
    A.R. Liddle, P. Parsons, J.D. Barrow, Phys. Rev. D 50, 7222 (1994)CrossRefGoogle Scholar
  64. 64.
    J.M. Bardeen, Phys. Rev. D 22, 1882 (1980)MathSciNetCrossRefGoogle Scholar
  65. 65.
    H. Kodama, M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsThe University of BurdwanGolapbagIndia

Personalised recommendations