Advertisement

An algorithm to generate anisotropic rotating fluids with vanishing viscosity

  • Stefano ViaggiuEmail author
Regular Article

Abstract.

Starting with generic stationary axially symmetric spacetimes depending on two spacelike isotropic orthogonal coordinates x1, x2, we build anisotropic fluids with and without heat flow but with wanishing viscosity. In the first part of the paper, after applying the transformation \(x^{1}\rightarrow J(x^{1})\), \( x^{2}\rightarrow F(x^{2})\) (with \( J(x^{1}), F(x^{2})\) regular functions) to general metrics coefficients \( g_{ab}(x^{1},x^{2}) \rightarrow g_{ab}(J(x^{1}), F(x^{2}))\) with \( G_{x^{1} x^{2}}=0\), being \( G_{ab}\) the Einstein’s tensor, we obtain that \( \tilde{G}_{x^{1} x^{2}}=0\rightarrow G_{x^{1} x^{2}}(J(x^{1}),F(x^{2}))=0\). Therefore, the transformed spacetime is endowed with an energy-momentum tensor \( T_{ab}\) with expression \( g_{ab}Q_{i}+\)heat term (where \( g_{ab}\) is the metric and \( \{Q_{i}\}\), \( i=1\ldots 4\) are functions depending on the physical parameters of the fluid), i.e. without viscosity and generally with a non-vanishing heat flow. We show that after introducing suitable coordinates, we can obtain interior solutions that can be matched to the Kerr one on spheroids or Cassinian ovals, providing the necessary mathematical machinery. In the second part of the paper we study the equation involving the heat flow and thus we generate anisotropic solutions with vanishing heat flow. In this frame, a class of asymptotically flat solutions with vanishing heat flow and viscosity can be obtained. Finally, some explicit solutions are presented with possible applications to a string with anisotropic source and a dark energy-like equation of state.

References

  1. 1.
    G. Neugebauer, Astrophys. J. 414, L97 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    G. Neugebauer, R. Meunel, Phys. Rev. Lett. 73, 2166 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    G. Neugebauer, A. Kleinwachter, R. Meinel, Helv. Phys. Acta 69, 472 (1996)ADSGoogle Scholar
  4. 4.
    B.K. Harrison, J. Math. Phys. 9, 1744 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    R. Geroch, J. Math. Phys. 12, 918 (1971)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Geroch, J. Math. Phys. 13, 394 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    W. Kimmersley, J. Math. Phys. 14, 651 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    H. Hernandez, L.A. Nunez, U. Percoco, Class Quantum Grav. 16, 871 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    E.N. Glass, J.P. Krisch, Phys. Rev. D 57, R5945 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    P.S. Letelier, Phys. Rev. D 22, 807 (1980)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J.P. Krisch, E.N. Glass, J. Math. Phys. 43, 1509 (2002)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J.M.M. Senovilla, Class. Quantum Grav. 4, L 115 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    M.D. Wahlquist, Phys. Rev. 172, 1291 (1968)ADSCrossRefGoogle Scholar
  14. 14.
    J. Winicour, J. Math. Phys. 16, 1805 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    V. Stockum, Proc. R. Soc. Edinb. 57, 135 (1937)CrossRefGoogle Scholar
  16. 16.
    W.B. Bonnor, J. Phys. A: Math. Gen. 10, 1673 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    D. Vogt, P.S. Letelier, Phys. Rev. D 76, 084010 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M. Gurses, F. Gursey, J. Math. Phys. 16, 2385 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    L. Herrera, L. Jimenez, J. Math. Phys. 23, 2339 (1982)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    E.T. Newman, A. Janis, J. Math. Phys. 6, 915 (1965)ADSCrossRefGoogle Scholar
  21. 21.
    T. Papakostas, Int. J. Mod. Phys. D 10, 869 (2001)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    S. Viaggiu, Int. J. Mod. Phys. D 15, 1441 (2006)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Lewis, Proc. R. Soc. Lond. 136, 176 (1932)ADSCrossRefGoogle Scholar
  24. 24.
    S. Viaggiu, Class. Quantum Grav. 24, 2755 (2007)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Viaggiu, Int. J. Mod. Phys. D 19, 1783 (2010)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.L. Hernandez-Pastora, L. Herrera, J. Martin, Class. Quantum Grav. 33, 235005 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    J.L. Hernandez-Pastora, L. Herrera, Phys. Rev. D 95, 024003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Herrera, J.L. Hernandez-Pastora, Phys. Rev. D 96, 024048 (2017)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    K. Dev, M. Gleiser, Gen. Rel. Grav. 35, 1435 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    E.S. Franz, A.R. Liddle, Phys. Lett. B 404, 25 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)Google Scholar
  32. 32.
    R. Bergamini, S. Viaggiu, Class. Quantum Grav. 21, 4567 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    R. Balbinot, R. Bergamini, B. Giorgini, Nuovo Cimento 1, 1 (1983)CrossRefGoogle Scholar
  34. 34.
    S. Viaggiu, Class. Quantum Grav. 22, 2309 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Ehlers, in Théories Relativistes de la gravitation, Colloques Internationaux du CNRS (CNRS Editions, 1962) p. 275Google Scholar
  36. 36.
    B.C. Xanthoupolo, Proc. Soc. London A 395, 381 (1979)ADSCrossRefGoogle Scholar
  37. 37.
    P. Florides, Nuovo Cimento B 13, 1 (1973)ADSCrossRefGoogle Scholar
  38. 38.
    H. Stephamni, J. Math. Phys. 29, 1650 (1988)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    D. Garfinkle, E.N. Glass, J.P. Krisch, Gen. Relativ. Gravit. 29, 467 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    W. Israel, Phys. Rev. D 2, 641 (1970)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    E. Kyriakopoulos, Int. J. Mod. Phys. D 22, 1350051 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    L. Herrera, A. Di Prisco, J. Carot, Phys. Rev. D 97, 124003 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica Nucleare, Subnucleare e delle RadiazioniUniversità degli Studi Guglielmo MarconiRomeItaly
  2. 2.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly
  3. 3.INFN, Sezione di NapoliComplesso Universitario di Monte S. AngeloNapoliItaly

Personalised recommendations