Advertisement

Saddle in linear curl forces, cofactor systems and holomorphic structure

  • Partha GuhaEmail author
Regular Article
  • 23 Downloads

Abstract.

We show the connection between the theory of Hamiltonian curl forces introduced by Berry and Shukla and the cofactor systems introduced by the Linköping school. The linear curl forces studied by Berry and Shukla are the dynamics related to saddle potentials. We also discuss the rotating saddle potential and its connection to the Bateman-like Lagrangian for a pair of damped and anti-damped oscillators. Here the pair of frictional terms can be mapped to the Coriolis-like force caused by the rotation of the potential as shown by Kirillov and Levi. We study the geometrical structure of the linear curl force. A hidden holomorphic structure is uncovered in this paper.

References

  1. 1.
    M.V. Berry, P. Shukla, J. Phys. A 45, 305201 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M.V. Berry, P. Shukla, Proc. R. Soc. A 471, 20150002 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    M.V. Berry, P. Shukla, J. Phys. A 46, 422001 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    P.C. Chaumet, M. Nieto-Vesperinas, Opt. Lett. 25, 1065 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    S. Albaladejo, M.I. Marqués, M. Laroche, J.J. Sáenz, Phys. Rev. Lett. 102, 113602 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Shimizu, H. Sasada, Am. J. Phys. 66, 960 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    M.C. Gutzwiller, J. Math. Phys. 14, 139 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    R.L. Devaney, J. Differ. Equ. 29, 253 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    A. Stephenson, Philos. Mag. 15, 233 (1908)CrossRefGoogle Scholar
  11. 11.
    P.L. Kapitsa, Sov. Phys. JETP. 21, 588 (1951)MathSciNetGoogle Scholar
  12. 12.
    P.L. Kapitza, Usp. Fiz. Nauk. 44, 7 (1951)ADSCrossRefGoogle Scholar
  13. 13.
    Shayak Bhattacharjee, EPL 118, 45002 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    J. Byrne, P.S. Farago, Proc. Phys. Soc. 86, 801 (1965)ADSCrossRefGoogle Scholar
  15. 15.
    B.G. Grff, E. Klempt, Z. Naturforsch. 22a, 1960 (1967)ADSGoogle Scholar
  16. 16.
    A.A. Sokolov, Yu.G. Pavlenko, Opt. Spectrosc. 22, 1 (1967)ADSGoogle Scholar
  17. 17.
    O. Kirillov, M. Levi, Am. J. Phys. 84, 26 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    O. Kirillov, M. Levi, Nonlinearity 30, 1109 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M.V. Berry, P. Shukla, New J. Phys. 18, 063018 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A. Ghose-Choudhury, P. Guha, A. Paliathanasis, P.G.L. Leach, Int. J. Geom. Methods Mod. Phys. 14, 1750018 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    P. Guha, Applications in curl forces in nonlinear dynamics, Lecture given at the “C.K. Majumdar School” at SNBNCBS, 23 May-8 June 2018 (2018)Google Scholar
  22. 22.
    S. Rauch-Wojciechowski, K.K. Marciniak, H. Lundmark, J. Math. Phys. 40, 6366 (1999)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Lundmark, Stud. Appl. Math. 110, 257 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    H. Lundmark, Integrable nonconservative Newton systems with quadratic integrals of motion, in Linkping Studies in Science and Technology, Thesis No. 756 (Linköping Univ., Linköping, 1999)Google Scholar
  25. 25.
    R. Krechetnikov, J.E. Marsden, Rev. Mod. Phys. 79, 519 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    H. Bateman, Phys. Rev. 38, 815 (1931)ADSCrossRefGoogle Scholar
  27. 27.
    P.L. Kapitsa, Zhur. Tekhn. Fiz. 9, 124 (1939)Google Scholar
  28. 28.
    D.R. Merkin, Gyroscopic systems (Nauka, Moscow, 1974), in RussianGoogle Scholar
  29. 29.
    D.R. Merkin, Introduction to the Theory of Stability (Springer-Verlag, New York, 1997)Google Scholar
  30. 30.
    A. Khein, D.F. Nelson, Am. J. Phys. 61, 170 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    C.M. Bender, M. Gianfreda, N. Hassanpour, H.F. Jones, J. Math. Phys. 57, 084101 (2016)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Cariglia, C. Duval, G.W. Gibbons, P.A. Horvathy, Ann. Phys. 373, 631 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SN Bose National Centre for Basic SciencesKolkataIndia

Personalised recommendations