Advertisement

A higher-order nonlocal strain gradient mass sensor based on vibrating heterogeneous magneto-electro-elastic nanoplate via third-order shear deformation theory

  • S. GhahnaviehEmail author
  • Sh. Hosseini-Hashemi
  • K. Rajabi
  • S. Ghahnavieh
Regular Article
  • 50 Downloads

Abstract.

The sensitivity property of a magneto-electro-elastic nanoplate made of functionally graded materials with concentrated masses under different boundary conditions is investigated in this article according to the third-order shear deformation assumption. Both hardening and softening behaviors of materials are taken into account based on the nonlocal strain gradient theory for more accurate modelling of size-dependent structures. The effective material properties of a magneto-electro-elastic nanoplate are supposed to vary continuously across the thickness direction using a power law model in terms of the volume fractions of material phases. The governing equations are achieved utilizing Hamilton’s principle and then solved by applying the Galerkin technique. Numerical investigations are performed to illustrate the effects of initial external electric and magnetic potentials, aspect ratio, material length scale parameters, and material gradient on the changes of nanoplate frequency shift curves. It is clearly proved that these factors have highly significant effects on the sensitivity performance of mass nanosensor.

References

  1. 1.
    J. Van Den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, J. Mater. Sci. 9, 1705 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    A.R. Annigeri, N. Ganesan, S. Swarnamani, J. Sound Vib. 292, 300 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    C.Y. Dong, J. Sound Vib. 317, 219 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Simões Moita, C.M. Mota Soares, C.A. Mota Soares, Compos. Struct. 91, 421 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Milazzo, Compos. Struct. 94, 2078 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Li, J. Zhang, Smart Mater. Struct. 23, 025002 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S.C. Kattimani, M.C. Ray, Compos. Struct. 114, 51 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Shooshtari, S. Razavi, Mech. Res. Commun. 69, 103 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Liu, P. Zhang, G. Lin, W. Wang, S. Lu, Eng. Anal. Bound. Elem. 68, 103 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Soni, N.K. Jain, P.V. Joshi, Nonlinear Dyn. 90, 137 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Shooshtari, S. Razavi, J. Intell. Mater. Syst. Struct. 28, 451 (2017)CrossRefGoogle Scholar
  12. 12.
    Z.X. Yang, P.F. Dang, Q.K. Han, Z.H. Jin, Compos. Struct. 185, 411 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Kiran, S. Kattimani, J. Intell. Mater. Syst. Struct. 29, 2206 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Hosseini, A. Jamalpoor, J. Therm. Stresses 38, 1428 (2015)CrossRefGoogle Scholar
  15. 15.
    R.K. Bhangale, N. Ganesan, J. Sound Vib. 288, 412 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    W. Bin, Y. Jiangong, H. Cunfu, J. Sound Vib. 317, 250 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Wang, R. Xu, H. Ding, Eur. J. Mech. - A/Solids 30, 999 (2011)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Saadatfar, M. Aghaie-Khafri, Smart Mater. Struct. 23, 035004 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    D. Xiao, Q. Han, Y. Liu, C. Li, Compos. Struct. 153, 704 (2016)CrossRefGoogle Scholar
  20. 20.
    V. Mahesh, P.J. Sagar, S. Kattimani, J. Intell. Mater. Syst. Struct. 29, 1430 (2018)CrossRefGoogle Scholar
  21. 21.
    M.C. Kiran, S.C. Kattimani, M. Vinyas, Compos. Struct. 191, 36 (2018)CrossRefGoogle Scholar
  22. 22.
    C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Phys. Rev. Lett. 96, 075505 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    G. Stan, C.V. Ciobanu, P.M. Parthangal, R.F. Cook, Nano Lett. 7, 3691 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Q. Wang, C.M. Wang, Nanotechnology 18, 075702 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    S.C. Pradhan, J.K. Phadikar, J. Sound Vib. 325, 206 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    T. Murmu, S.C. Pradhan, Physica E 41, 1628 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    R. Aghababaei, J.N. Reddy, J. Sound Vib. 326, 277 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    R.D. Mindlin, Arch. Ration. Mech. Anal. 16, 51 (1964)MathSciNetCrossRefGoogle Scholar
  29. 29.
    R.D. Mindlin, N.N. Eshel, Int. J. Solids Struct. 4, 109 (1968)CrossRefGoogle Scholar
  30. 30.
    R.D. Mindlin, Int. J. Solids Struct. 1, 417 (1965)CrossRefGoogle Scholar
  31. 31.
    R.D. Mindlin, H.F. Tiersten, Arch. Ration. Mech. Anal. 11, 415 (1962)CrossRefGoogle Scholar
  32. 32.
    R.A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)CrossRefGoogle Scholar
  34. 34.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51, 1477 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)CrossRefGoogle Scholar
  37. 37.
    C.W. Lim, G. Zhang, J.N. Reddy, J. Mech. Phys. Solids 78, 298 (2015)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Acta Mech. Sin. 30, 516 (2014)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    R. Ansari, R. Gholami, Int. J. Appl. Mech. 08, 1650053 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Jamalpoor, A. Ahmadi-Savadkoohi, M. Hosseini, S. Hosseini-Hashemi, Eur. J. Mech. - A/Solids 63, 84 (2017)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    F. Ebrahimi, A. Dabbagh, Mater. Res. Express 4, 025003 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Li, P. Ma, W. Wang, J. Intell. Mater. Syst. Struct. 27, 1139 (2016)CrossRefGoogle Scholar
  43. 43.
    B. Habibi, Y.T. Beni, F. Mehralian, Mech. Adv. Mater. Struct. (2017)  https://doi.org/10.1080/15376494.2017.1410902
  44. 44.
    F. Ebrahimi, A. Dabbagh, J. Electromagn. Waves Appl. 32, 138 (2018)CrossRefGoogle Scholar
  45. 45.
    F. Ebrahimi, M.R. Barati, Smart Mater. Struct. 25, 105014 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    M. Arefi, A.M. Zenkour, Eur. Phys. J. Plus 132, 423 (2017)CrossRefGoogle Scholar
  47. 47.
    A. Kiani, M. Sheikhkhoshkar, A. Jamalpoor, M. Khanzadi, J. Intell. Mater. Syst. Struct. 29, 741 (2018)CrossRefGoogle Scholar
  48. 48.
    A. Jamalpoor, A. Ahmadi-Savadkoohi, S. Hosseini-Hashemi, Smart Mater. Struct. 25, 105035 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    B. Akgöz, Ö. Civalek, Mater. Des. 42, 164 (2012)CrossRefGoogle Scholar
  50. 50.
    A. Farajpour, M.R.H. Yazdi, A. Rastgoo, M. Mohammadi, Acta Mech. 227, 1849 (2016)MathSciNetCrossRefGoogle Scholar
  51. 51.
    K. Rajabi, S. Hosseini-Hashemi, Mater. Res. Express 4, 075054 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    L.H. Ma, L.L. Ke, J.N. Reddy, J. Yang, S. Kitipornchai, Y.S. Wang, Compos. Struct. 199, 10 (2018)CrossRefGoogle Scholar
  53. 53.
    E. Khanmirza, A. Jamalpoor, A. Kiani, Eur. Phys. J. Plus 132, 422 (2017)CrossRefGoogle Scholar
  54. 54.
    D. Karličić, P. Kozić, S. Adhikari, M. Cajić, T. Murmu, M. Lazarević, Int. J. Mech. Sci. 96-97, 132 (2015)CrossRefGoogle Scholar
  55. 55.
    X.-W. Lei, T. Natsuki, J.-X. Shi, Q.-Q. Ni, J. Appl. Phys. 113, 154313 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    T. Murmu, S. Adhikari, Sensors Actuators B Chem. 188, 1319 (2013)CrossRefGoogle Scholar
  57. 57.
    F. Ebrahimi, M.R. Barati, Iran. J. Sci. Technol. Trans. Mech. Eng. 1, (2017)Google Scholar
  58. 58.
    W. Guo, T. Liu, H. Zhang, R. Sun, Y. Chen, W. Zeng, Z. Wang, Sensors Actuators B Chem. 166-167, 492 (2012)CrossRefGoogle Scholar
  59. 59.
    P.-C. Yeh, T.-K. Chung, C.-H. Lai, C.-M. Wang, Appl. Phys. A 122, 29 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.-H. Park, J. Park, J.-Y. Kim, B. Kim, J. Phys. Chem. C 113, 7085 (2009)CrossRefGoogle Scholar
  61. 61.
    M. Hosseini, M.R. Mofidi, A. Jamalpoor, M. Safi Jahanshahi, Microsyst. Technol. 24, 2295 (2018)CrossRefGoogle Scholar
  62. 62.
    Z.-B. Shen, H.-L. Tang, D.-K. Li, G.-J. Tang, Comput. Mater. Sci. 61, 200 (2012)CrossRefGoogle Scholar
  63. 63.
    M.R. Barati, H. Shahverdi, Mater. Res. Express 4, 075019 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    L.-L. Ke, C. Liu, Y.-S. Wang, Physica E 66, 93 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringIran University of Science and Technology, NarmakTehranIran
  2. 2.Department of Mechanical Engineering, College of Engineering, Sanandaj BranchIslamic Azad UniversitySanandajIran
  3. 3.Department of Industrial Engineering, Najafabad BranchIslamic Azad UniversityIsfahanIran

Personalised recommendations