Advertisement

Generalized AdS-Lorentz deformed supergravity on a manifold with boundary

  • Alessandro Banaudi
  • Lucrezia RaveraEmail author
Regular Article

Abstract.

The purpose of this paper is to explore the supersymmetry invariance of a particular supergravity theory, which we refer to as D = 4 generalized AdS-Lorentz deformed supergravity, in the presence of a non-trivial boundary. In particular, we show that the so-called generalized minimal AdS-Lorentz superalgebra can be interpreted as a peculiar torsion deformation of \(\mathfrak{osp} (4 \vert 1)\), and we present the construction of a bulk Lagrangian based on the aforementioned generalized AdS-Lorentz superalgebra. In the presence of a non-trivial boundary of space-time, that is when the boundary is not thought of as set at infinity, the fields do not asymptotically vanish, and this has some consequences on the invariances of the theory, in particular on supersymmetry invariance. In this work, we adopt the so-called rheonomic (geometric) approach in superspace and show that a supersymmetric extension of a Gauss-Bonnet-like term is required in order to restore the supersymmetry invariance of the theory. The action we end up with can be recast as a MacDowell-Mansouri-type action, namely as a sum of quadratic terms in the generalized AdS-Lorentz covariant super field-strengths.

References

  1. 1.
    J.W. York jr., Phys. Rev. Lett. 28, 1082 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2752 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Brown, J.W. York jr., Phys. Rev. D 47, 1407 (1993) gr-qc/9209012ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Horava, E. Witten, Nucl. Phys. B 475, 94 (1996) hep-th/9603142ADSCrossRefGoogle Scholar
  5. 5.
    J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) (Adv. Theor. Math. Phys. 2CrossRefGoogle Scholar
  6. 6.
    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998) hep-th/9802109ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) hep-th/9802150ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000) hep-th/9905111ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    E. D’Hoker, D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253Google Scholar
  10. 10.
    K. Skenderis, Class. Quantum Grav. 19, 5849 (2002) hep-th/0209067CrossRefGoogle Scholar
  11. 11.
    R. Aros, M. Contreras, R. Olea, R. Troncoso, J. Zanelli, Phys. Rev. Lett. 84, 1647 (2000) gr-qc/9909015ADSCrossRefGoogle Scholar
  12. 12.
    R. Aros, M. Contreras, R. Olea, R. Troncoso, J. Zanelli, Phys. Rev. D 62, 044002 (2000) hep-th/9912045ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Mora, R. Olea, R. Troncoso, J. Zanelli, JHEP 06, 036 (2004) hep-th/0405267ADSCrossRefGoogle Scholar
  14. 14.
    R. Olea, JHEP 06, 023 (2005) hep-th/0504233ADSCrossRefGoogle Scholar
  15. 15.
    D.P. Jatkar, G. Kofinas, O. Miskovic, R. Olea, Phys. Rev. D 89, 124010 (2014) arXiv:1404.1411 [hep-th]ADSCrossRefGoogle Scholar
  16. 16.
    P. van Nieuwenhuizen, D.V. Vassilevich, Class. Quantum Grav. 22, 5029 (2005) hep-th/0507172ADSCrossRefGoogle Scholar
  17. 17.
    D.V. Belyaev, JHEP 01, 047 (2006) hep-th/0509172ADSCrossRefGoogle Scholar
  18. 18.
    D.V. Belyaev, P. van Nieuwenhuizen, JHEP 02, 047 (2008) arXiv:0711.2272 [hep-th]ADSCrossRefGoogle Scholar
  19. 19.
    D.V. Belyaev, P. van Nieuwenhuizen, JHEP 09, 069 (2008) arXiv:0806.4723 [hep-th]ADSCrossRefGoogle Scholar
  20. 20.
    D. Grumiller, P. van Nieuwenhuizen, Phys. Lett. B 682, 462 (2010) arXiv:0908.3486 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D.V. Belyaev, T.G. Pugh, JHEP 10, 031 (2010) arXiv:1008.1574 [hep-th]ADSCrossRefGoogle Scholar
  22. 22.
    L. Andrianopoli, R. D’Auria, JHEP 08, 012 (2014) arXiv:1405.2010 [hep-th]ADSCrossRefGoogle Scholar
  23. 23.
    L. Castellani, R. D’Auria, P. Fré, Supergravity and superstrings: A Geometric perspective, Vol. 2, Supergravity (World Scientific, Singapore, 1991) pp. 607--1371Google Scholar
  24. 24.
    L. Castellani, Supergravity in the group-geometric framework: a primer, arXiv:1802.03407 [hep-th]Google Scholar
  25. 25.
    L. Ravera, Group Theoretical Hidden Structure of Supergravity Theories in Higher Dimensions, arXiv:1802.06602 [hep-th]Google Scholar
  26. 26.
    S.W. MacDowell, F. Mansouri, Phys. Rev. Lett. 38, 739 (1977) Phys. Rev. Lett. 38ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M.C. Ipinza, P.K. Concha, L. Ravera, E.K. Rodríguez, JHEP 09, 007 (2016) arXiv:1607.00373 [hep-th]Google Scholar
  28. 28.
    P.K. Concha, E.K. Rodríguez, P. Salgado, JHEP 08, 009 (2015) arXiv:1504.01898 [hep-th]ADSCrossRefGoogle Scholar
  29. 29.
    D.V. Soroka, V.A. Soroka, Adv. High Energy Phys. 2009, 234147 (2009) hep-th/0605251CrossRefGoogle Scholar
  30. 30.
    R. Durka, J. Kowalski-Glikman, M. Szczachor, Mod. Phys. Lett. A 26, 2689 (2011) arXiv:1107.4728 [hep-th]ADSCrossRefGoogle Scholar
  31. 31.
    F. Izaurieta, E. Rodríguez, P. Salgado, J. Math. Phys. 47, 123512 (2006) hep-th/0606215ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M.C. Ipinza, F. Lingua, D.M. Peñafiel, L. Ravera, Fortschr. Phys. 64, 854 (2016) arXiv:1609.05042 [hep-th]MathSciNetCrossRefGoogle Scholar
  33. 33.
    J. Diaz, O. Fierro, F. Izaurieta, N. Merino, E. Rodríguez, P. Salgado, O. Valdivia, J. Phys. A 45, 255207 (2012) arXiv:1311.2215 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    O. Fierro, F. Izaurieta, P. Salgado, O. Valdivia, (2+1)-dimensional supergravity invariant under the AdS-Lorentz superalgebra, arXiv:1401.3697 [hep-th]Google Scholar
  35. 35.
    P.K. Concha, R. Durka, N. Merino, E.K. Rodríguez, Phys. Lett. B 759, 507 (2016) arXiv:1601.06443 [hep-th]ADSCrossRefGoogle Scholar
  36. 36.
    P. Salgado, S. Salgado, Phys. Lett. B 728, 5 (2014)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    P.K. Concha, N. Merino, E.K. Rodríguez, Phys. Lett. B 765, 395 (2017) arXiv:1606.07083 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P. Concha, E. Rodríguez, Phys. Lett. B 774, 616 (2017) arXiv:1708.08827 [hep-th]ADSCrossRefGoogle Scholar
  39. 39.
    P.K. Concha, D.M. Peñafiel, E.K. Rodríguez, P. Salgado, Phys. Lett. B 725, 419 (2013) arXiv:1309.0062 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    P.K. Concha, D.M. Peñafiel, E.K. Rodríguez, P. Salgado, Eur. Phys. J. C 74, 2741 (2014) arXiv:1402.0023 [hep-th]ADSCrossRefGoogle Scholar
  41. 41.
    P.K. Concha, D.M. Peñafiel, E.K. Rodríguez, P. Salgado, Phys. Lett. B 742, 310 (2015) arXiv:1405.7078 [hep-th]ADSCrossRefGoogle Scholar
  42. 42.
    S. Bonanos, J. Gomis, K. Kamimura, J. Lukierski, Phys. Rev. Lett. 104, 090401 (2010) arXiv:0911.5072 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    H. Bacry, P. Combe, J.L. Richard, Nuovo Cimento A 67, 267 (1970)ADSCrossRefGoogle Scholar
  44. 44.
    R. Schrader, Fortschr. Phys. 20, 701 (1972)CrossRefGoogle Scholar
  45. 45.
    S. Bonanos, J. Gomis, J. Phys. A 42, 145206 (2009) arXiv:0808.2243 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    S. Bonanos, J. Gomis, K. Kamimura, J. Lukierski, J. Math. Phys. 51, 102301 (2010) arXiv:1005.3714 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    J. Gomis, K. Kamimura, J. Lukierski, AIP Conf. Proc. 1196, 124 (2009) arXiv:0910.0326 [hep-th]ADSCrossRefGoogle Scholar
  48. 48.
    S. Bonanos, J. Gomis, J. Phys. A 43, 015201 (2010) arXiv:0812.4140 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    G.W. Gibbons, J. Gomis, C.N. Pope, Phys. Rev. D 82, 065002 (2010) arXiv:0910.3220 [hep-th]ADSCrossRefGoogle Scholar
  50. 50.
    J. Gomis, A. Kleinschmidt, JHEP 07, 085 (2017) arXiv:1705.05854 [hep-th]ADSCrossRefGoogle Scholar
  51. 51.
    R. D’Auria, P. Fré, Nucl. Phys. B 201, 101 (1982) Nucl. Phys. B 206ADSCrossRefGoogle Scholar
  52. 52.
    L. Andrianopoli, R. D’Auria, L. Ravera, JHEP 08, 095 (2016) arXiv:1606.07328 [hep-th]ADSCrossRefGoogle Scholar
  53. 53.
    D.M. Peñafiel, L. Ravera, Fortschr. Phys. 65, 1700005 (2017) arXiv:1701.04234 [hep-th]MathSciNetCrossRefGoogle Scholar
  54. 54.
    L. Andrianopoli, R. D’Auria, L. Ravera, Phys. Lett. B 772, 578 (2017) arXiv:1705.06251 [hep-th]ADSCrossRefGoogle Scholar
  55. 55.
    L. Ravera, Hidden Role of Maxwell Superalgebras in the Free Differential Algebras of D=4 and D=11 Supergravity, arXiv:1801.08860 [hep-th]Google Scholar
  56. 56.
    M.B. Green, Phys. Lett. B 223, 157 (1989)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    P.K. Concha, E.K. Rodríguez, JHEP 09, 090 (2014) arXiv:1407.4635 [hep-th]ADSCrossRefGoogle Scholar
  58. 58.
    O. Miskovic, R. Olea, Phys. Rev. D 79, 124020 (2009) arXiv:0902.2082 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    G. Anastasiou, I.J. Araya, R. Olea, Renormalization of Entanglement Entropy from topological terms, arXiv:1712.09099 [hep-th]Google Scholar
  60. 60.
    G. Anastasiou, I.J. Araya, R. Olea, Topological terms, AdS$_{2n}$ gravity and renormalized Entanglement Entropy of holographic CFTs, arXiv:1803.04990 [hep-th]Google Scholar
  61. 61.
    O. Hohm, H. Samtleben, Phys. Rev. Lett. 111, 231601 (2013) arXiv:1308.1673 [hep-th]ADSCrossRefGoogle Scholar
  62. 62.
    O. Hohm, H. Samtleben, Phys. Rev. D 89, 066017 (2014) arXiv:1312.4542 [hep-th]ADSCrossRefGoogle Scholar
  63. 63.
    O. Hohm, H. Samtleben, JHEP 01, 131 (2015) arXiv:1410.8145 [hep-th]ADSCrossRefGoogle Scholar
  64. 64.
    M. Trigiante, Phys. Rep. 680, 1 (2017) arXiv:1609.09745 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    L. Andrianopoli, B.L. Cerchiai, R. D.’Auria, M. Trigiante, JHEP 04, 007 (2018) arXiv:1801.08081 [hep-th]CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INFNSezione di MilanoMilanoItaly
  2. 2.Dipartimento di FisicaUniversità di MilanoMilanoItaly

Personalised recommendations